| 研究生: |
徐洪陞 HSU HUNG-SHENG |
|---|---|
| 論文名稱: |
都市垃圾焚化爐廢氣處理系統除酸功能穩定度提升之研究 Study on enhancing the stability of acid gas removal efficiency for the flue gas treatment system of municipal solid waste incinerator |
| 指導教授: |
曾迪華
Dyi-Hwa Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 垃圾焚化爐 、廢氣處理系統 、半乾式洗煙塔 、酸性氣體 、去除效率 |
| 外文關鍵詞: | Waste incinerator, Flue gas treatment system, Semi-dry scrubber, Acid gas, Removal efficiency |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來一般家戶垃圾的收集量顯著的減少,使得在台灣的大型都市垃圾焚化爐,具有餘裕處理一般事業廢棄物,但由於進入焚化爐的垃圾性質和組成,產生極大的變化,使得酸性氣體污染物的排放濃度,經常發生起伏變化的情形。本研究為了瞭解酸性氣體控制設施之操作的穩定度,以台灣北部地區某大型都市垃圾焚化爐,採用半乾式洗煙塔去除廢氣中酸性氣體,做為實廠研究對象,藉以探討各項操作變數,包括化學藥劑種類、反應溫度及化學藥劑計量比,對於酸性氣體去除效率的影響,並以情境模擬實驗,了解維持廢氣處理系統穩定度的策略。
研究結果顯示,當廢氣反應溫度在150℃時,採用消石灰或氫氧化鈉作為化學藥劑,化學藥劑計量比分別在2.4及1.6時,對於酸性氣體中的HCl,均可達到96%以上的去除效率,SOx的去除效率,分別可達到86%及78%以上,不過隨廢氣反應溫度升高,酸性氣體中HCl及SOx的去除效率會逐漸下降。本研究亦發現,當廢氣反應溫度升高至210℃時,只有碳酸氫鈉,在化學藥劑計量比1.6時,對於HCl及SOx的去除效率,可以分別維持在96%及85%以上。
此另本研究結果指出,維持除酸系統功能穩定的策略,可藉由額外增設冷卻水噴入系統,依須要隨時控制廢氣反應溫度約在140~150℃之間,如此可以在最低的消石灰化學藥劑計量比下,得到最佳的除酸效率;增設一套乾式消石灰噴入系統,當廢氣中酸性氣體監測濃度發生較大變化時,可以立即調整增加化學藥劑計量比,以提高酸性氣體的去除效率。此外在垃圾儲坑,利用抓斗充份攪拌混和各類廢棄物,使投入焚化爐的進料性質,隨時維持在均勻穩定狀態。
In recent year, the collected amounts of the general household solid wastes decreased significantly, thus the large municipal solid waste incinerators (MSWI) in Taiwan have headroom capacity to handle the general industrial solid waste. Consequently, due to the great changes in nature and composition of the solid wastes into MSWI, the emission concentration of acid gas pollutants with high fluctuating conditions was occurred frequently. In order to realize the stability of the facility for controlling the acid gas pollutants, a full scale of MSWI in northern Taiwan, using semi-dry scrubbers to remove acid pollutants in the flue gas, was employed in this study. The effects of the operating variables, include type of chemicals, reaction temperature and stoichiometric ratio of chemical, on the removal efficiency of acid gas pollutants were investigated. Scenario simulation experiments were also carried out to understand the strategies for maintaining stability of the flue gas control system.
The results shown that when the flue gas at the temperature of 150 ℃ and using hydrate lime and sodium hydroxide as chemical agent at the stoichiometric ratio of excess dosing was 2.4 and 1.6, respectively, the HCl acid gas removal efficiency were both of over 96% and the SOx removal efficiency was above 86% and 78%, respectively. However, the increase of temperature of the flue gas, the HCI and SOx acid gas removal efficiency was gradually decreased. It also found that when the temperature of the flue gas increased to 210 ℃, only bicarbonate sodium at the stoichiometric chemical dosing ratio of 1.6, the HCl and SOx acid gas removal efficiency could be maintained above 96% and 85%, respectively.
In addition, the strategies for maintaining stability of the acid gas control system, the result of this study indicated that adding an extra cooling water spray system to control the temperature of flue gas approximately between 140 ~ 150 ℃ if at the necessary. So that the best acid gas removal efficiency could be obtained at the lowest stoichiometric dosing ratio of hydrate lime. Establish a new dry hydrated lime spray system for supplying the extra hydrate lime to enhance the removal efficiency of acid gases, when the exhaust gas emission concentration of acid gases suddenly changes. Besides, use crane to blend all kinds of solid wastes in the refuse bunker in order to make the nature of the feed into the waste incinerator maintaining at a uniform steady state at all operation time.
1. Bittner, G., Briggs, O. and Lauer, W., "ABB C-E Services, RSFCTM Wall Burner for Oil,Gas and Coal Retrofit Applications, "Windsor, CT: ABB C-E Services, Inc. (1994).
2. Chang, S. G., and G. C. Lee, "LBL PhoSNOx process for combined removal of SO2 and NOx from flue gas," Environmental progress , Vol.11,pp. 66-73 (1992).
3. Cheremisinoff, Paul N., and Richard A. Young, "Air pollution control and design handbook. Part II," (1977).
4. Duo, W., Kirkby, N. F., Seville, J. P. K., Kiel, J. H. A., Bos, A.,and Den Uil, H., "Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning," Chemical Engineering Science , Vol.51,pp. 2541-2546 (1996).
5. Gao, Shiqiu, Nakagawa Nobuyoshi, Kato Kunio, Inomata Makoto and Tsuchiya, F., "Simultaneous SO2/NOx removal by a powder-particle fluidized bed," Catalysis today , Vol.29,pp. 165-169 (1996).
6. Getler, Jens Lutken, Harold L. Shelton, and Dale A. Furlong, "Modeling the Spray Absorption Process for SO2 Removal," Journal of the Air Pollution Control Association , Vol.29,pp. 1270-1274 (1979).
7. Gleiser, R., and K. Felsvang, "Mercury Emission Reduction Using Activated Carbon with Spray Dryer Flue Gas Desulfurization Systems," Proceedings of the American Power Conference, Vol. 56,pp. 452-457(1994).
8. Helfritch, D., Bortz, S., Beittel, R., Bergman, P., and Toole‐O'Neil, B., "Combined SO2 and NOx removal by means of dry sorbent injection," Environmental progress, Vol.11,pp.7-10 (1992).
9. Jozewicz, Wojciech, John Chang, and Charles B. Sedman, "Bench–scale evaluation of calcium sorbents for acid gas emission control," Environmental Progress , Vol.9,pp. 137-142 (1990).
10. Keener, Timothy C., and Wayne T. Davis, "Study of the reaction of SO2 with NaHCO3 and Na2CO3, " Journal of the Air Pollution Control Association , Vol.34,pp. 651-654 (1984).
11. Kong, Yougen, and Heidi Davidson, "Dry sorbent injection of sodium sorbents for SO2, HCl and mercury mitigation," 18th Annual North American Waste-to-Energy Conference, American Society of Mechanical Engineers(2010).
12. Schaber, Karlheinz, "Aerosol formation in absorption processes," Chemical engineering science , Vol.50,pp. 1347-1360 (1995).
13. Uchida, Shigeo, Kamo, H., Kubota, H., and Kanaya, K., "Reaction kinetics of formation of hydrochloric acid in municipal refuse incinerators," Industrial and Engineering Chemistry Process Design and Development , Vol.22,pp. 144-149 (1983).
14. Uchida, Shigeo, and Katsumi Tsuchiya, "Simulation of spray drying absorber for removal of hydrochloric acid in flue gas from incinerators," Industrial and Engineering Chemistry Process Design and Development , Vol.23,pp. 300-307 (1984).
15. Wang, J., and T. C. Keener, "The effect of hygroscopic additives on Ca(OH)2 utilization in spray dryer flue gas desulfurization," Environmental technology , Vol.17,pp 1047-1057 (1996).
16. Weinell, Claus E., Peter I. Jensen, Kim Dam-Johansen, and Hans Livbjerg, "Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity," Industrial and engineering chemistry research , Vol.31, pp. 164-171 (1992).
17. 林建三、林建榮,「固體廢棄物處理」,高立圖書有限公司(2007)。
18. 林駿、陳立,「廢棄物處理技術(含設計)」,大碩文化教育事業(1994)。
19. 涂寬,「進入氣電共生的世界」,金華科技圖書股份有限公司(2003)。
20. 張乃斌,「固體廢棄物處理」,三民書局(1997)。
21. 張乃斌,「垃圾焚化廠系統工程規劃與設計」,茂昌圖書有限公司(1999)。
22. 章裕民,「固體廢棄物處理」,文京圖書有限公司(2004)。
23. 鄭宗岳、林鴻祥,「空氣污染防治理論與設計」,文京圖書有限公司(1998)。
24. 張君正、張木彬,「氮氧化物生成機制與控制技術之探討」,工業污染防治,第50期(1994)。
25. 翁瑞裕,「選擇性觸媒還原(SCR)脫硝法」,工業污染防治,第57期 (1996)。
26. 康國裕,「碳酸氫鈉在煙道氣脫硫之應用」,工業污染防治,第39期(1991)。
27. 劉蘭萍,「氮氧化物控制技術與應用實務」,化工技術,第6期(1999)。
28. 王鯤生、江康鈺、儲雯娣、林仕敏、葉宗智,「焚化溫度與垃圾PVC含量對焚化灰渣重金屬分佈特性之研究」,第十三屆空氣污染控制技術研討會論文集(1996)。
29. 司洪濤,鄭乙任,袁中新,「乾式煙道噴注法處理燃燒廢氣中酸性氣體之研究」,第十三屆空氣污染控制技術研討會論文專輯(1996)。
30. 陳明輝,「事業廢棄物焚化爐操作原理」,事業廢棄物焚化爐操作及灰渣管理訓練班(2007)。
31. 魏銘彥,「一般垃圾焚化產生有害空氣污染物處理技術」,行政院環保署空保處(1999)。
32. 方天志,「焚化過程中有機氯化物於無機氯化物對CO,HCl及有機物生成之影響」,國立中興大學環境工程研究所碩士論文(1999)。
33. 歐文毓,「焚化廢氣中污染物之探討」,國立中興大學環境工程研究所碩士論文(1999)。
34. 劉禎淑,「焚化廢氣中污染物控制之研究」,國立中興大學環境工程研究所博士論文(2002)。
35. 林韡紘,「都市固體廢棄物焚化爐酸性氣體處理成效探討」,國立中央大學環境工程研究所碩士論文(2009)。
36. 行政院環境保護署,「環保法規查詢系統」,2013。
37. 行政院環境保護署,「環保新聞專區」,2013。
38. http://www.epa.gov/ttn/chief/ap42/index.html
39. http://www.epa.gov/ttn/chief/le/index.html
40. http://www.epa.gov.tw/
41. http://swims.epa.gov.tw/swims/swims_net/default.html
42. http://air.epa.gov.tw/Public/Main.aspx