跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃志鵬
Chih-Peng Huang
論文名稱: 投影法對於控制系統的分析與設計之研究
A projection scheme to analysis and design of control systems
指導教授: 莊堯棠
Yau-Tarng Juang
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 82
中文關鍵詞: 投影法控制器的設計極點配置強健穩定性模糊控制
外文關鍵詞: fuzzy control, projection method, controller design, pole assignment, robust stability
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用投影法來處理控制系統的相關問題。我們先將矩陣投影的原理,推導至複變數域中。根據所導衍的投影運算子,可以解複數矩陣不等式的問題。
    根據李亞普諾夫(Lyapunov)穩定性理論,我們先提出不確定連續系統的穩定性準則,然後藉由複數矩陣不等式,進而將準則延伸至極點配置的問題。此外,對於不確定的離散系統,亦提出了穩定性和D-穩定性的判定準則,其準則亦可用矩陣不等式的方式來描述。根據投影法,我們提出了有效的數值演算法來分析系統的強健穩定性。若加入狀態迴授控制器,我們更提出了一些有效的設計方法。
    最後,我們將探討利用T-S 模型來表示的模糊系統其穩定性的問題。根據複數矩陣不等式,其穩定性的論點,將被延伸至滿足特定要求的穩定性。這樣我們則可運用所提出的投影演算法則,來判定系統的特定穩定性條件。若加入平行補償器 (PDC),亦提出了幾種設計的方法。最後利用數值例和模擬結果來論述所提出方法的可行性和有效性。


    In this thesis, the projection method will be involved for solving the concerned control problems. The projection philosophy is extended to complex number field. By the derived projection operators, a set of complex LMI can be solved.
    Based on Lyapunov stability theorem, we first present a stability criterion for linear uncertain systems. By involving the complex LMI, the criterion can be extended to the problem of the pole assignment in a specific region. Furthermore, we similarly present the stability and D-stability criteria for discrete uncertain systems. Thus, by the projection scheme, the projection algorithm is then proposed to analyze the stability. By involving the state feedback control, we further propose some design methods for linear uncertain systems.
    Finally, the stability issues of the fuzzy systems, described in Takagi-Sugeno’s (T-S) fuzzy model, are discussed. Based on the complex LMI, the stability issue can also be extended to a prescribed stability region. By involving the PDC (Parallel distributed compensation), we further propose some design methods for the overall fuzzy system. Some numerical examples and simulation results are given to demonstrate the validity and feasibility of our methods.

    ABSTRACT .........................................................IV LIST OF FIGURES ..................................................III NOMENCLATURE .....................................................V CHAPTER 1 INTRODUCTION ........................................1 1.1 Motivation and background ....................................1 1.2 Organization and main tasks ..................................3 CHAPTER 2 THE COMPLEX PROJECTION SCHEME .........................5 2.1 Introduction ...............................................5 2.2 The basic concept of the projection method .................6 2.3 Problem formulation ..........................................7 2.4 The projection operators ...................................8 2.5 Summary .....................................................15 CHAPTER 3 STABILITY ANALYSIS AND POLE-ASSIGNMENT OF CONTROL SYSTEMS ...................16 3.1 Introduction ..............................................16 3.2 Stability and pole-assignment for linear uncertain systems..16 3.3 Stability and D-stability for discrete uncertain systems....18 3.4 T-S fuzzy model and its stability issues....................19 3.5 A projection scheme for stability assurance.................21 3.6 Numerical examples..........................................22 3.5 Summary.....................................................29 CHAPTER 4 STABILIZATION AND POLE PLACEMENT OF LINEAR UNCERTAIN SYSTEMS..........................33 4.1 Introduction ................................................33 4.2 A design scheme for a class of uncertain systems..............33 4.3 Stabilization and pole placement..............................41 4.4 The design algorithm .........................................43 4.5 Summary ......................................................47 CHAPTER 5 PDC CONTROLLER DESIGN................................48 5.1 Introduction ...............................................48 5.2 Background material .......................................49 5.3 PDC controller design .......................................49 5.4 Controller design examples ................................52 5.5 Summary ..................................................58 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS .........................64 6.1 Conclusions .................................................64 6.2 Future works ................................................65 REFERENCES ......................................................66

    [1] A. A. Abdul-Wahab, “Lyapunov bounds for root clustering in the presence of system uncertainty,” International Journal of Systems Science, vol. 21, no. 12, pp. 2603-2611, 1990.
    [2] W. T. Baumann and W. J. Rugh, “Feedback control of nonlinear systems by extended linearization,” IEEE Transaction on Automatic Control, vol. 31, no. 1, pp. 40-46, 1986.
    [3] A. Bhaya, E. Kaszkurewicz, “On discrete-time diagonal and D-stability,” Linear Algebra and its Applications, vol. 187, pp. 87-104, 1993.
    [4] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Philadelphia, 1994.
    [5] J. P. Boyle and R. L. Dysktra, “A method for finding projections on to the intersection of convex sets in Hibert space,” Advances in Order Restricted Statistical Inference, pp. 28-43. Lecture Notes in statistics, vol. 37, Springer-Verlag, Berlin, 1986.
    [6] S. G. Cao, N. W. Rees and G. Feng, “ Stability analysis and design for a class of continuous-time fuzzy control systems,” International Journal of Control, vol. 64, no. 6, pp. 1069-1087, 1996.
    [7] J. Y. Chen and C. C. Wong, “Implementation of the Takagi-Sugeno model-based fuzzy control using an adaptive gain controller,” IEE Proc.-Control Theory Appl., vol. 147, no. 5, pp. 509-514, 2000.
    [8] W. Cheney, and A. A. Goldstein, “Proximity maps for convex sets,” Am. Math. Soc., vol. 12, pp. 448-450, 1959.
    [9] M. Chilali and P. Gahinet, “ design with pole placement constraints: an LMI approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 358-367, 1996.
    [10] M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI regions,” IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257-2270, 1999.
    [11] J. H. Chou, “Improved measures of stability-robustness for linear discrete systems with structured uncertainties,” Control-Theory and Advanced Technology, vol. 10, no. 4, pp. 1169-1180, 1995.
    [12] F. Cuesta, F. Gordillo, J. Aracil and A. Ollero, “Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems,” IEEE Transactions on Fuzzy systems, vol. 7, no. 5, pp. 505-520, 1999.
    [13] J. Douglas and M. Athans, “Robust linear quadratic designs with real parameter uncertainty,” IEEE Transactions on Automatic Control, vol. 39, pp.107-111, 1994.
    [14] G. Feng, S. G. Cao, N. W. Rees and C. K. Chak, “Design of fuzzy control systems with guaranteed stability,” Fuzzy Sets and Systems, pp. 1-10, 1997.
    [15] Y. K. Foo and Y. C. Soh, “Stability analysis of a family of matrices,” IEEE Transactions on Automatic Control, vol. 35, no. 11, pp. 1257-1259, 1990.
    [16] K. Furuta and S. B. Kim, “Pole assignment in a specified disk,” IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 423-427, 1987.
    [17] P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The MATHWORKS Inc., 1995.
    [18] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 184-190, 1995.
    [19] J. C. Geromel, “On the determination of a diagonal solution of the Lyapunov equation,” IEEE Transactions on Automatic Control, vol. 30, no. 4, pp. 404-406, 1985.
    [20] J. C. Geromel, M. C. de Oliverira and L. Hsu, “LMI characterization of structural and robust stability,” Linear Algebra and its Applications, vol. 285, pp. 69-80, 1998.
    [21] K. M. Grigoriadis and R. E. skeleton, “Alternating convex projection methods for covariance control design,” International Journal of Control, vol. 60, pp. 1083-1106, 1992.
    [22] K. M. Grigoriadis and R. E. Skelton, “Low-order control design for LMI problems using Alternating projection methods,” Automatica, vol.32, no. 8, pp. 1117-1125, 1996.
    [23] L. G. Gubin, B. T. Polyak and E.V. Raik, “The method of projections for finding the common point of convex sets,” USSR comp. Math. Phys., vol. 7, pp. 1-24, 1967.
    [24] T. M. Guerra and L. Vermeiren, “Control laws for Takagi-Sugeno fuzzy models,” Fuzzy Sets and Systems, vol. 120, pp. 95-108, 2001.
    [25] J. Hauser, S. S. Sastry and P. Kokotovic, “Nonlinear control via approximate input-output linearization: the ball and beam example,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 392-398, 1992.
    [26] N. J. Higham, “Computing the nearest symmetric positive semidefinite matrix,” Linear Algebra Applications, vol. 103, pp. 103-118, 1988.
    [27] S. N. Huang, J. X. Qian and H. H. Shao, ”Robustness bounds for continuous systems with LQ regulators,” IEE Proceeding, 1995.
    [28] S. N. Huang and W. Ren, “New results on the robust bounds of linear uncertain systems,” International Journal of Systems Science, vol. 28, no. 2, pp. 141-144, 1997.
    [29] J. Joh, Y. H. Chen and R. Langari, “On the stability issues of linear Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 402-410, 1998.
    [30] Y. T. Juang, T. S. Kuo and C. F. Hsu, “New approach to time-domain analysis for stability robustness of dynamic systems,” International Journal of Systems Science, vol. 18, pp. 1363-1376, 1987.
    [31] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Robustness of pole assignment in a specified region,” IEEE Transactions on Automatic Control, vol. 34, no.7, pp.758-760, 1989.
    [32] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Pole-assignment for uncertain systems with structured perturbations,” IEEE Transactions on Circuits and Systems, vol. 37, no. 1, pp.107-110, 1990.
    [33] Y. T. Juang, “Robust stability and robust pole assignment of linear systems with structured uncertainty,” IEEE Transactions on Automatic Control, vol. 36, pp. 635-637, 1991.
    [34] E. Kazhurewicz and L. Hsu, “A note on the absolute stability of nonlinear discrete time systems,” International Journal of Control, vol. 40, pp. 867-869, 1984.
    [35] L. H. Keel, S. P. Bhattacharyya and JO-W. Howze, “Robust control with structured perturbations”, IEEE Transactions on Automatic Control, vol. 33, pp. 68-78, 1988.
    [36] K. Kiriakidis, A. Grivas and A. Tzes, “Quadratic stability analysis of the Takagi-Sugeno fuzzy model,” Fuzzy Sets and Systems, vol. 98, pp. 1-14, 1998.
    [37] K. Kiriakidis, “ Non-linear control system design via fuzzy modeling and LMIs,” International Journal of Control, vol. 72, pp. 676-685, 1999.
    [38] A. Knadel, Y. Luo and Y. Q. Zhang, “Stability analysis of fuzzy control systems,” Fuzzy Sets and Systems, vol. 105, pp. 33-48, 1999.
    [39] M. A. Leal and J. S. Gibson, “A first-order lyapunov robustness method for linear systems with uncertain parameters,” IEEE Transactions on Automatic Control, vol. 35, pp. 1068-1070, 1990.
    [40] C. H. Lee, “Upper and lower matrix bounds of the solutions for continuous and discrete Lyapunov equation,” Franklin Institute, vol. 334B, no. 4, pp. 539-546, 1997.
    [41] J. C. Lee, E. A. Misawa and K. N. Reid, “Asymmetric robustness measure of eigenvalue distribution for uncertain linear system with structured perturbation,” Proceedings of the American Control conference (AACC), pp. 3950-3954, 1997.
    [42] T. T. Lee and S. H. Lee, ”Discrete optimal control with eigenvalue assigned inside a circular region,” IEEE Transactions on Automatic Control, vol. AC-31, no. 10, pp. 958-962, 1986.
    [43] D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1968.
    [44] Leh Luoh, “New stability analysis of T-S fuzzy system with robust approach,” Mathematics and Computers in Simulation, vol. 59, pp. 335-340, 2002.
    [45] X. J. Ma, Z. Q. Sun and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, pp. 41-51, 1998.
    [46] C. Marsh and H. Wei, “Robustness bounds for systems with parametric uncertainty,” Automatica, vol. 32, pp. 1447-1453, 1996.
    [47] T. Mori, “Estimates for a measure of stability robustness via a Lyapunov matrix equation,” International Journal of Control, no. 3, pp. 921-927, 1989.
    [48] T. Mori, Y. Mori and H. Kokame, “Common Lyapunov function approach to matrix root clustering,” Systems and Control Letters, vol. 44, pp. 73-78, 2001.
    [49] Y. Nesterov and A. Nemirovsky, “Interior-point polynomial methods in convex programming,” SIAM. Philadelphia, PA, 1994.
    [50] A. T. Neto, J. M. Dion and L. Dugard, “ Robustness bounds for LQ regulators,” IEEE Transactions on Automatic Control, vol. 37, pp. 1373-1377, 1992.
    [51] A. Ollero, J. Aracil and A. Garcia-Cerezo, “Robust design of rule-based fuzzy controllers,” Fuzzy Sets and Systems, vol. 70, pp. 249-273, 1995.
    [52] M. C. de Oliveira, J. C. Geromel and L. Hsu, “LMI characterization of structural and robust stability: the discrete-time case,” Linear Algebra and its Applications, vol. 296, pp. 27-38, 1999.
    [53] C. W. Park, H. J. Kang, Y. H. Yee and M. Park, “ Numerical robust stability analysis of fuzzy feedback linearisation regulator based on linear matrix inequality approach,” IEE Proc.-Control Theory Appl., vol. 149, no.1, pp. 82-88, 2001.
    [54] A. Rachid, “Robustness of pole assignment in a specified region for perturbed systems,” International Journal of Systems Science, vol. 21, no. 3, pp. 579-585, 1990.
    [55] C. W. Ramos, L. D. Peres, “An LMI approach to compute robust stability domains for uncertain linear systems,” AACC, pp. 4073-4078, 2001.
    [56] C. W. Ramos, L. D. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Transactions on Automatic Control, vol. 47, no. 4, pp. 675-678, 2002.
    [57] M. E. Sezer and D. D. Siljak, A note on robust stability bounds, IEEE Transactions on Automatic Control, vol. 34, pp. 1212-1215, 1989.
    [58] K. C. Sio and C. K. Lee, “Stability of fuzzy PID controllers,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 28, no. 4, pp. 490-495, 1998.
    [59] J.-J. E. Slotine and I. L. Weiping, Applied Nonlinear Control, Prentice-Hall, 1991.
    [60] K. M. Sobel, S. S. Banda and J. H. Yeh, “Robust control for linear systems with structured state space uncertainty,” International Journal of Control, vol. 50, pp. 1991-2004, 1989.
    [61] M. K. Solak and A. C. Peng, “A note on robust pole placement,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 181-184, 1995.
    [62] J. H. Su and I. K. Fong, “Robust stability analysis of linear continuous / discrete-time systems with output feedback controllers,” IEEE Transactions on Automatic Control, vol. 38, no. 7, pp. 1154-1158, 1993.
    [63] K. Takagi and M. Sugeno, “ Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics vol. 15, pp. 116-132, 1985.
    [64] K. Tanaka and M. Sugeno, “Stability analysis of fuzzy systems using Lyapunov’s direct method,” in Proc. NAFIPS’ 90, pp. 133-136. 1990.
    [65] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135-156, 1992.
    [66] K. Tanaka and M. Sano, “ A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” IEEE Transactions on Fuzzy Systems, vol. 2, no. 2, pp. 119-134, 1994.
    [67] K. Tanaka, T. Ikeda and H. O. Wang, “Fuzzy regulators and Fuzzy observers: Relaxed stability conditions and LMI-base Designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, 1998.
    [68] H. O. Wang, K. Tanaka and M. F. Griffin, “An approach to fuzzy control of Nonlinear systems: Stability and Design Issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996.
    [69] C. A. Weber and J. P. Allebach, “Reconstruction of frequency-offset Fourier data by alternation projection onto constraint sets,” Proc. 24th Allerton Conf. On Communication, Control and Computing, Urbana Champaign, IL, pp. 194-201, 1986.
    [70] L. K. Wong, F. H. F. Leung and P. K. S. Tam, “Fuzzy model-based controller for inverted pendulum,” Electronics Letters, vol. 32, no. 18, pp. 1683-1685, 1996.
    [71] R. K. Yedavalli, “Improved measures of stability robustness for linear state space models,” IEEE Transactions on Automatic Control, vol. 30, pp. 577-579, 1985.
    [72] R. K. Yedavalli and Z. Liang, “Reduced conservatism in stability robustness bounds by state transformation,” IEEE Transactions on Automatic Control, vol. 31, pp. 863-866, 1986.
    [73] D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part 1-Theory,” IEEE Transactions on Medical image, vol. 1, pp. 81-94, 1982.
    [74] J. M. Zhang, R. H. Li and P. A. Zhang, “Stability analysis and systematic design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 120, pp. 65-72, 2001.
    [75] K. Zhou and P. P. Khargonekar, “Stability robustness bounds for linear state-space models with structured uncertainty,” IEEE Transactions on Automatic Control, vol. 32, pp. 621-623, 1987.

    QR CODE
    :::