跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李淑芬
Shu-fen Li
論文名稱: 水力回填煤灰之大地工程性質
The geological engineering properties of hydraulic filled coal ash
指導教授: 黃俊鴻
Jing-Hung Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 108
中文關鍵詞: 基本物理性質試驗底灰飛灰動態強度動力三軸試驗力學性質試驗
外文關鍵詞: coal ash, fly ash, bottom ash, physical properties, mechanical properties, cyclic resistance
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自火力燃煤發電所產生的剩餘灰燼稱作煤灰,主要分為粗顆粒的底灰與細顆粒的飛灰,目前煤灰處理主要是利用水力排放到海邊築堤的灰塘區,堆置形成煤灰地盤。由於城市不斷的開發,基於用地問題,發電廠已有在煤灰地盤上構築重型儲煤區或擴廠的規劃,但對於此煤灰造地地盤之工程性質研究卻非常缺乏。因此本研究針對煤灰進行一系列的室內試驗,包含基本物理性質試驗、力學性質試驗以及動力三軸試驗,以求取煤灰的各種物理指數與工程性質。由實驗結果得知煤灰依統一土壤分類法,底灰可分類為SW-SM,飛灰為ML,煤灰比重大約在2.29~2.37之間,比一般砂土小,孔隙比較一般土壤大,滲透性良好。由壓密試驗結果得知,煤灰在極短時間內即完成主壓密,與一般土壤差異極大,其中飛灰具有較大的壓縮性。由直接剪力試驗結果得知,純底灰之摩擦角較純飛灰大。由動力三軸試驗結果得知,試體相對密度越大,其液化強度也越大;在相同相對密度下,液化強度大小順序為偏底灰>偏飛灰>純底灰>純飛灰。綜合以上試驗結果,可供未來煤灰地盤進行工程設計時的參考。


    The coal ash is a surplus of thermal power which can be separated into fly ash and bottom ash. The coal ash deposit was formed by hydraulic filling is a new geological composition at seaside. In this study, undisturbed samples and remolded samples is used to conduct a series of laboratory physical, chemical, mechanical and cyclic triaxial tests were conducted to obtain the basic, mechanical and dynamic properties of the coal ash. It was found that coal ash is a high void ratio, low specific gravity, non-plastic and cohesionless soil. The fly ash is hollow spherical shaped soil and the bottom ash is irregular granular soil. The cyclic triaxial test shows the behavior of coal ash in a cyclic motion that liquefaction and 5% double axial strain almost happen simultaneous in coal ash samples. At first the coal ash samples had a small deformation and then the deformation will rapid increase after liquefaction happened. The influences of cyclic motion on different coal ash samples were also presented. These test results may provide a valuable base for building designs and considerations in a foundation soil with coal soil.

    摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章 前言 1 1.1 研究動機與目的 1 1.2 研究方法與流程 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1 煤灰簡介 4 2.1.1 煤灰的來源 4 2.1.2 煤灰之處理 4 2.1.3 煤灰之特性 5 2.2 動態試驗 7 2.2.1 動力三軸試驗原理 7 2.2.2 土壤之動態強度 9 2.2.3 水力回填土之特性 17 第三章 室內試驗 23 3.1 試驗規劃 23 3.2 現地煤灰之化學性質試驗 24 3.3 現地煤灰之基本物理性質試驗 24 3.4 現地煤灰之力學性質試驗 29 3.5 現地煤灰之動力三軸試驗 32 3.5.1 試體準備 32 3.5.2 動力三軸試驗儀器與周邊配備 33 3.5.3 動力三軸試驗步驟 38 第四章 試驗結果 50 4.1 基本物理性質試驗結果 50 4.2 力學性質試驗結果 54 4.3 動力三軸試驗結果 58 第五章 結論與建議 91 5.1 結論 91 5.2 建議 92 參考文獻 93

    1. 王斌、梁?、許丹、趙莉花,「電廠粉煤灰資源綜合利用現狀及展望」,南水北調與水利科技,第七卷,第二期,第97-99頁(2009)。
    2. 林平全,飛灰混凝土,科技圖書股份有限公司,台北,第5-26頁(1989)。
    3. 林志棟、陳惠峰,「台灣電力公司之火力發電廠產灰概要」,台灣地區飛灰混凝土應用研討會(一)專輯,中壢,第19-1~19-8頁(1992)。
    4. 林炳炎,飛灰用在混凝土中,現代營建雜誌社,台北,第1-6頁(1991)。
    5. 林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
    6. 沈茂松,實用土壤力學試驗,文笙書局,台北,第196-273頁(1998)。
    7. 何廠訥,土工的若干新理論研究與應用,水利電力出版社,北京,第22-26頁(1994)。
    8. 吳偉特、楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化性之研究」,土木水利,第十四卷,第三期,第59-74頁(1987)。
    9. 陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文(2001)。
    10. 賈尚星、周亮,「粉煤灰地基土工程性質研究」,資源環境與工程,第二十一卷,第三期,第249-251頁(2007)。
    11. 賴正義、劉昌民、張玉金,「含煤灰之可流動材料的工程性質研究」,台灣電力公司研究報告,No. 114,台北(1991)。
    12. 郭淑德、郭麗雯、許讚全、謝清白,「煤灰利用或棄置處理可能對環境之衝擊調查研究」,台灣電力公司電力研究所,No. 2,台北(1987)。
    13. 鄭文隆、郭奇正,「未飽和砂性土壤承受反覆剪應力之孔隙水壓上升研究」,土木水利季刊,第十四卷,第三期,第59-74頁 (1987)。
    14. 鄭清江,「片狀砂土模擬水力填築後剪力特性之研究」,博士論文,國立中央大學土木工程學系,中壢(1996)。
    15. Braja M. Das, Principles of Geotechnical Engineering, Brooks/Cole, USA, pp. 61-68(2002).
    16. Chaney, R.C., “Saturation effects on the cyclic strength of sands,” Soil Dynamics and Earthquake Engineering, ASCE, Vol. 1, pp. 342-358(1978).
    17. Chang, N.Y., Yeh, S.T. and Kaufman, L.P., “Liquefaction potential of clean and silty sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032(1982).
    18. Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48(1982).
    19. Ishihara, K., and Okada, S., “Effects of stress history on cyclic behavior of sand,” Soil and Foundation, Vol. 18, No. 4, Japanese, pp. 31-45(1978).
    20. Ishihara, K., “Liquefaction and flow failure during earthquackes,” Geotechinique, Vol. 43, No. 3, pp. 351-415(1993).
    21. Ladd, R.S., “Preparing test specimens using undercompaction”, Geotechnical Testing Journal, Vol. 1, No. 1, pp.16-23(1978).
    22. Lee, K.L. and Fitton, J.A., “Factors affecting the cyclic loading strength of soil”, Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, American Society for Testing and Materials, pp. 71-95(1969).
    23. Marcuson, W.F., “Definition of term related to liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588(1978).
    24. Peacock, W.H., and Seed, H.B., “Sand liquefaction under cyclic loading simple shear conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE Vol. 94, No. SM3, pp. 689-708(1968).
    25. Seed, H.B., “Evaluation of soil liquefaction effects on level ground during earthquakes,” Liquefaction Problems in Geotechnical Engineering, ASCE National Convention, pp. 1-104(1976).
    26. Seed, H.B., and Idriss, I.M., “Analysis of soil liquefaction,” JSMFD, ASCE, Vol. 93, No. SM3, pp. 83-108(1967).
    27. Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273(1971).
    28. Seed, H.B., and Lee, K. L., “Liquefaction of saturated sands during cyclic loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
    29. Sladen, J.A., and Hewitt, K.J., “Influence of placement method on the in-situ density of hydraulic sand fills,” Canadian Geotechnical Journal, Vol. 26, pp. 453-466(1989).
    30. Sun, J.I., Golesorkhi, R., and Seed, H. B., “Dynamic moduli and damping ratios for cohesive soils,” Earthquake Engineering Research Center, No. UCB/EERC-88/15, University of California, Berkeley, August.( 1988).
    31. Vaid, Y.P., Chern, J.C., and Tumi, H., “Confining pressure, grain angularity, and liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 3, pp. 1229-1235(1985).
    32. Yamamuro, J.A., and Lade, P.V., “Static liquefaction of very loose sands”, Canadian Geotechnical Journal, Ottawa, Vol. 34, pp. 905-917(1997).

    QR CODE
    :::