| 研究生: |
蕭皓真 Haw-Jen Hsiao |
|---|---|
| 論文名稱: | CO2 reduction over oxide-supported catalysts under low temperature reverse water-gas shift reaction |
| 指導教授: |
陳郁文
Yu-Wen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 逆水氣轉移反應 |
| 外文關鍵詞: | reverse water-gas shift reaction |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是開發及比較多種觸媒,以提高在低溫下進行逆水氣轉移反應時二氧化碳的轉化率和一氧化碳的選擇性。該反應中通常使用的擔體是金屬氧化物,如TiO2、CeO2、Al2O3,它們可以使金屬高度分散,並且有足夠的擔體氧空位可以進行反應,而且過渡金屬氧化物的擔體的氧原子的流動性可以減少結焦以保持觸媒的穩定性。鹼金屬的添加用來提高觸媒的活性。在這項研究中,採用了兩種製備方法,初濕含浸法以及共沉澱法。觸媒都在300-450 ℃的溫度範圍內進行鍛燒。所製備的觸媒通過X射線衍射、氮氣吸附脫附曲線以及透射電子顯微鏡進行了特徵分析。反應是在一個連續的固定床反應器系統中進行的。觸媒首先在10%的H2/He氣體還原,溫度在200-500 ℃之間,流量為12,000 ml/g*h。當反應進行時,CO2/H2的進料比為1/2,反應溫度在200到500 ℃之間,在一大氣壓中,在固定床反應器中,觸媒重量為0.5克,氣體流速為30-60 cm3/min。XRD結果顯示,氧化鈰的晶粒更大,排列更有規律,並且存在氧化銅的晶粒摻雜。銅鐵比為4:1的共沉澱法製備的銅鐵氧化鋁觸媒在XRD圖譜中出現了低強度的峰,表明分散在氧化鋁擔體上的銅鐵為小晶體或是非晶體。氮氣吸附結果表明,觸媒具有較高的BET表面積和大量的微孔,利於反應的進行。HRTEM圖顯示金屬氧化物均勻地分散在擔體上,以及呈現晶格的結構。反應結果表明,負載貴重金屬的觸媒沒有高轉化率;含有50 wt.% CuFe/Al2O3的銅鐵鋁觸媒具有較高的轉化率;而銅鐵摻雜的氧化鈰觸媒在所有觸媒中顯示出最高的轉化率和選擇性。
The purpose of this study was to develop a catalyst to improve the conversion of CO2 and the selectivity of CO for a reverse water-gas shift reaction at low temperatures. The supports generally used in this reaction is metal oxide such as TiO2, CeO2, and Al2O3. They allowed high dispersion of the metal and the mobility of the oxygen atoms in the support of the transition metal oxide to reduce coking and maintain the stability of the catalyst, and there were enough oxygen vacancies for the reaction. The addition of alkali metals has been used to increase the activity of the catalyst. In this study, the incipient-wetness impregnation method and coprecipitation methods were applied. Catalysts were calcined at the temperature range of 300-450 ℃. The as-prepared catalysts were characterized by X-ray diffraction, N2 sorption, and transmission electron microscope. The reaction was carried out in a continuous fixed-bed reactor system. The catalyst was firstly reduced with 10% H2/He gas at a temperature between 200 and 500 ℃ with a flow rate of 12,000 ml/g*h. When reaction proceeded, CO2/H2 with feed ratio 1/2, reaction temperature between 200 and 500 °C and at atmosphere, in a fixed bed reactor, catalyst weight 0.5 g, gas flow rate 30-60 cm3/min. The XRD results showed that the grains of cerium oxide were larger and more regularly arranged, and there was grain doping of copper oxide. The copper-iron alumina catalysts prepared by the co-precipitation method with a copper to iron ratio of 4: 1 had low intensity peaks in XRD patterns, indicating that the copper and iron dispersed on the alumina support with small crystals or amorphous phase. The N2 sorption results showed that the catalysts had high BET surface area with a huge number of micropores. The TEM images displayed the metal oxides homogeneously dispersed on the support. Reaction results showed that the precious metal loaded on the support did not have high conversion. The Cu-Fe-Al catalysts with 50 wt.% CuFe/Al2O3 had the high conversion; and the cerium oxide-supported CuFe catalysts displayed the highest conversion and selectivity among all catalysts.
Ahmed, R., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., & Ali, M. U. (2020). Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review. Journal of Cleaner Production, 242, 118409.
Ansaloni, L., Salas-Gay, J., Ligi, S., & Baschetti, M. G. (2017). Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 522, 216-225.
Bando, K. K., Soga, K., Kunimori, K., & Arakawa, H. (1998). Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts. Applied Catalysis A: General, 175(1-2), 67-81.
Bobadilla, L. F., Santos, J. L., Ivanova, S., Odriozola, J. A., & Urakawa, A. (2018). Unravelling the role of oxygen vacancies in the mechanism of the reverse water–gas shift reaction by operando DRIFTS and ultraviolet–visible spectroscopy. ACS Catalysis, 8(8), 7455-7467.
Chen, C.-S., Cheng, W.-H., & Lin, S.-S. (2003). Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Applied Catalysis A: General, 238(1), 55-67.
Chen, X., Su, X., Liang, B., Yang, X., Ren, X., Duan, H., . . . Zhang, T. (2016). Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts. Journal of energy chemistry, 25(6), 1051-1057.
Daza, Y. A., & Kuhn, J. N. (2016). CO 2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO 2 conversion to liquid fuels. RSC advances, 6(55), 49675-49691.
Dias, Y. R., & Perez-Lopez, O. W. (2020). Carbon dioxide methanation over Ni-Cu/SiO2 catalysts. Energy Conversion and Management, 203, 112214.
Goguet, A., Meunier, F., Breen, J., Burch, R., Petch, M., & Ghenciu, A. F. (2004). Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction. Journal of catalysis, 226(2), 382-392.
Goguet, A., Meunier, F. C., Tibiletti, D., Breen, J. P., & Burch, R. (2004). Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. The Journal of Physical Chemistry B, 108(52), 20240-20246.
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103(39), 14288-14293.
He, Y., Yang, K. R., Yu, Z., Fishman, Z. S., Achola, L. A., Tobin, Z. M., . . . Batista, V. S. (2019). Catalytic manganese oxide nanostructures for the reverse water gas shift reaction. Nanoscale, 11(35), 16677-16688.
Jin, T., Zhou, Y., Mains, G., & White, J. (1987). Infrared and x-ray photoelectron spectroscopy study of carbon monoxide and carbon dioxide on platinum/ceria. Journal of Physical Chemistry, 91(23), 5931-5937.
Kaiser, P., Unde, R. B., Kern, C., & Jess, A. (2013). Production of liquid hydrocarbons with CO2 as carbon source based on reverse water‐gas shift and Fischer‐Tropsch synthesis. Chemie Ingenieur Technik, 85(4), 489-499.
Kattel, S., Yu, W., Yang, X., Yan, B., Huang, Y., Wan, W., . . . Chen, J. G. (2016). CO2 Hydrogenation over Oxide‐Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie International Edition, 55(28), 7968-7973.
Kim, S. S., Lee, H. H., & Hong, S. C. (2012). A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts. Applied Catalysis A: General, 423, 100-107.
Knutson, T. R., & Tuleya, R. E. (2004). Impact of CO 2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. Journal of climate, 17(18), 3477-3495.
Konsolakis, M., Lykaki, M., Stefa, S., Carabineiro, S. A., Varvoutis, G., Papista, E., & Marnellos, G. E. (2019). CO2 hydrogenation over nanoceria-supported transition metal catalysts: Role of ceria morphology (nanorods versus nanocubes) and active phase nature (Co versus Cu). Nanomaterials, 9(12), 1739.
Kwak, J. H., Kovarik, L., & Szanyi, J. (2013a). CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catalysis, 3(11), 2449-2455.
Kwak, J. H., Kovarik, L., & Szanyi, J. n. (2013b). Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catalysis, 3(9), 2094-2100.
Li, J., Lin, Y., Pan, X., Miao, D., Ding, D., Cui, Y., . . . Bao, X. (2019). Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catalysis, 9(7), 6342-6348.
Li, S., Xu, Y., Chen, Y., Li, W., Lin, L., Li, M., . . . Yang, C. (2017). Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal–support interaction. Angewandte Chemie, 129(36), 10901-10905.
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. (2018). A short review of recent advances in CO 2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC advances, 8(14), 7651-7669.
Matsubu, J. C., Yang, V. N., & Christopher, P. (2015). Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. Journal of the American Chemical Society, 137(8), 3076-3084.
Nityashree, N., Price, C., Pastor-Perez, L., Manohara, G., Garcia, S., Maroto-Valer, M. M., & Reina, T. (2020). Carbon stabilised saponite supported transition metal-alloy catalysts for chemical CO2 utilisation via reverse water-gas shift reaction. Applied Catalysis B: Environmental, 261, 118241.
Porosoff, M. D., & Chen, J. G. (2013). Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. Journal of catalysis, 301, 30-37.
Sakurai, H., Tsubota, S., & Haruta, M. (1993). Hydrogenation of CO2 over gold supported on metal oxides. Applied Catalysis A: General, 102(2), 125-136.
Santos, J. L., Bobadilla, L. F., Centeno, M. A., & Odriozola, J. A. (2018). Operando DRIFTS-MS study of WGS and rWGS reaction on biochar-based Pt catalysts: the promotional effect of Na. C, 4(3), 47.
Stangeland, K., Kalai, D., Li, H., & Yu, Z. (2017). CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia, 105, 2022-2027.
Su, X., Yang, X., Zhao, B., & Huang, Y. (2017). Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. Journal of energy chemistry, 26(5), 854-867.
Wang, C., Guan, E., Wang, L., Chu, X., Wu, Z., Zhang, J., . . . Meng, X. (2019). Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. Journal of the American Chemical Society, 141(21), 8482-8488.
Wang, L.-C., Khazaneh, M. T., Widmann, D., & Behm, R. J. (2013). TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst–A first step toward identifying a redox mechanism in the Reverse Water–Gas Shift reaction. Journal of catalysis, 302, 20-30.
Wang, Y., Xu, Y., Liu, Q., Sun, J., Ji, S., & Wang, Z. j. (2019). Enhanced low‐temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts. Journal of Chemical Technology & Biotechnology, 94(12), 3780-3786.
Whitlow, J. E., & Parrish, C. F. (2003). Operation, modeling and analysis of the reverse water gas shift process. Paper presented at the AIP Conference Proceedings.
Xiaoding, X., & Moulijn, J. (1996). Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy & Fuels, 10(2), 305-325.
Xu, J., Su, X., Duan, H., Hou, B., Lin, Q., Liu, X., . . . Huang, Y. (2016). Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. Journal of catalysis, 333, 227-237.
Yan, B., Zhao, B., Kattel, S., Wu, Q., Yao, S., Su, D., & Chen, J. G. (2019). Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. Journal of catalysis, 374, 60-71.
Yang, J., Cai, W., Ma, M., Li, L., Liu, C., Ma, X., . . . Chen, X. (2020). Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Science of the Total Environment, 711, 134569.
Yang, S.-C., Pang, S. H., Sulmonetti, T. P., Su, W.-N., Lee, J.-F., Hwang, B.-J., & Jones, C. W. (2018). Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions. ACS Catalysis, 8(12), 12056-12066.
Yang, X., Su, X., Chen, X., Duan, H., Liang, B., Liu, Q., . . . Zhang, T. (2017). Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Applied Catalysis B: Environmental, 216, 95-105.
Ye, J., Ge, Q., & Liu, C.-j. (2015). Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd–In/SiO2 catalyst. Chemical Engineering Science, 135, 193-201.
Yuan, H., Zhu, X., Han, J., Wang, H., & Ge, Q. (2018). Rhenium-promoted selective CO2 methanation on Ni-based catalyst. Journal of CO2 Utilization, 26, 8-18.
Zhu, X., Shen, M., Lobban, L. L., & Mallinson, R. G. (2011). Structural effects of Na promotion for high water gas shift activity on Pt–Na/TiO2. Journal of catalysis, 278(1), 123-132.
Zhuang, Y., Currie, R., McAuley, K. B., & Simakov, D. S. (2019). Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5 wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 575, 74-86.