跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張奇喆
Chi-Che Chang
論文名稱: 超臨界R-410A與R-32熱傳及壓降性能之研究
指導教授: 楊建裕
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 超臨界R-410AR-32熱傳壓降
外文關鍵詞: Supercritical, R-410A, R-32, Heat Transfer, Pressure Drop
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗的方式研究R-410A與R-32,在圓管6.5mm中穿越超臨界區域的加熱熱傳及壓降特性。R-410A壓力分別為5.0 MPa與5.5 MPa,溫度從59oC-87oC。R-32壓力分別為5.8 MPa與6.5 MPa,溫度從65oC-87oC。流量分別為200 kg/m2s、400 kg/m2s、600 kg/m2s與800 kg/m2s。
    在不同的擬臨界壓力下,擬臨界壓力越高,整體壓降會降低,但熱傳也降低,擬臨界壓力越低,整體壓降升高,熱傳也會升高。在R-410A與R-32不同流體的壓降與熱傳係數比較,R-410A與R-32的壓降相差很小,但熱傳係數方面,R-32的最高熱傳係數與R-410A的最高熱傳係數相差2000 W/m2-K。


    In this paper, the heat transfer and pressure drop characteristics of R-410A and R-32 in the supercritical region of 6.5mm in the tube are studied experimentally. R-410A pressure was 5.0 MPa and 5.5 MPa, the temperature from 59oC-87oC. R-32 pressure was 5.8 MPa and 6.5 MPa, the temperature from 65oC-87oC. Flow rates were 200 kg / m2s, 400 kg / m2s, 600 kg / m2s and 800 kg / m2s, respectively.
    At different pseudo - critical pressures, the higher the pseudo - critical pressure, the lower the overall pressure drop, but also reduce the heat transfer, the lower the pseudo - critical pressure, the overall pressure drop, heat transfer will increase. R-410A and R-32 different fluid pressure drop and heat transfer coefficient comparison, R-410A and R-32 pressure drop difference is very small, but the heat transfer coefficient, R-32 maximum heat transfer coefficient and the R- 410A of the maximum heat transfer coefficient difference of 2000 W / m2-K.

    目錄 摘要 I 致謝 II 表目錄 V 圖目錄 VI 符號說明 IX 第一章 前言 1 第二章 文獻回顧 7 第三章 實驗方法 21 3.1簡介 21 3.2實驗系統 24 3.2.1測試段 26 3.2.2冷媒循環系統 27 3.2.3水循環系統 27 3.3實驗設備 27 3.3.1溫度量測 27 3.3.2壓力量測 28 3.3.3差壓量測 28 3.3.4流量量測 28 3.3.5其他設備 29 3.4實驗步驟 30 3.5資料換算 31 3.5.1熱傳資料換算 31 3.5.2壓降資料換算 33 3.6 Modified Wilson Plot method 34 第四章、實驗結果 40 第五章 結論 66 參考文獻 67 附錄 72

    參考文獻
    Baskov, V.L., Kuraeva, I.V., and Protopopov, V.S., 1977, “Heat
    Transfer with the turbulent flow of a liquid under supercritical
    pressure in tubes under cooling conditions”, High Temperature,
    vol. 15, pp. 81-86.
    Bergman, T. L., et al. 2011, “Fundamentals of heat and mass
    transfer”, John Wiley & Sons.
    Briggs, D. E., and Youn, E. H., “Modified Wilson plot techniques for
    obtaining heat transfer correlations for shell and tube heat
    exchangers”, Chemical Engineering Progress Symposium Series 65 (1969) 35–45.
    Bringer, R.P. and Smith, J.M., 1957, “Heat transfer in critical
    region”, AIChE Journal, vol. 3, pp. 49-55. Quoted in Yoon et
    al.[2003]
    Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of
    supercritical carbon dioxide. Part 1. Experimental measuremen”,
    International Journal of Refrigeration, vol. 27, pp. 736-747.
    Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of
    supercritical carbon dioxide. Part 2. Comparison of numerical
    calculation with different turbulence models”, International
    Journal of Refrigeration, vol. 27, pp. 748-760.
    Dittus, F. W., and Boelter, L. M. K., 1930, “Heat Transfer in
    Automobile Radiators of the Tubular Type,” University of
    California, Berkeley, Publications on Engineering, Vol. 2, No.
    13, pp. 443-461. Quoted in Bergman, et al. [2011].
    Fundamentals of heat and mass transfer, John Wiley & Sons.
    ENER-G-ROTORS, http://www.ener-g-rotors.com/waste-heat/
    Garimella. S., B. Mitra., U. C. Andresen., Y. Jiang.,and B. M. Fronk.,
    2005, “Heat transfer and pressure drop during supercritical
    cooling of HFCrefrigerant blends ,” International Journal of Heat
    and Mass Transfer, vol. 91, pp. 477-493.
    Gnielinski, V., 1976, “New equation for heat and mass transfer in
    Turbulent pipe and channel flow,” International Chemical
    Engineering, vol. 16, pp. 359-368. Quoted in Bergman,
    et al. [2011]. Fundamentals of Heat and Mass Transfer,
    John Wiley & Sons.
    Kays, W.M. and London, A.L., 1984, “ComPact Heat Exchangers,”
    3rd ed.McGraw-Hill, New York.
    Krasnoshchekov, E.A., Kuraeva, I.V., and Protopopov, V.S., 1969
    “Local heat transfer of carbon dioxide under supercritical
    pressure under cooling conditions”, Teplofizika Vysokikh
    Temperatur, vol. 7, pp. 922-930. Quoted in Garimella. et al.
    Liao, S.M. and Zhao, T.S., 2001, “An experimental investigation of
    Forced convective heat transfer from supercritical carbon dioxide
    in Horizontal mini/micro channels,” 35th National Heat Transfer
    Conference.
    Liao, S.M. and Zhao, T.S., 2002, “Measurements of heat transfer
    coefficients from supercritical carbon dioxide flowing in
    horizontal mini/micro channels,” Journal of Heats Transfer, vol.
    124, pp. 413-420.
    Liao, S.M. and Zhao, T.S., 2002, “An experimental investigation of
    convection heat transfer to supercritical carbon dioxide in
    miniature tubes,” International Journal of Heat and Mass
    Transfer, vol. 45, pp.5025-5034.
    Oh, H.K., Son, C.H., 2010, “New correlation to predict the heat
    transfercoefficient intube cooling of supercritical CO2 in
    horizontal macro-tubes,” Experimental Thermal and Fluid
    Science, vol. 34, pp.1230-1241.
    Olson, D.A., and Allen, D., 1998, “Heat transfer in turbulent
    Supercritical carbon dioxide flowing in a heated horizontal
    tube,” NISTIR 6234.
    Petrov, N.E., Popov V.N., 1985, “Heat transfer and resistance of
    carbon dioxide beingcooled in the supercritical region,” Thermal
    Engineering, vol. 32, pp. 131-.134
    Petrov, N.E., Popov, V.N., 1988, “Heat transfer and hydraulic
    resistance with turbulent flow in a tube of water under
    supercritical parameters of state,” Thermal Engineering, vol. 35,
    pp. 577-580.
    Petukhov, B.S., and Kirillov, V.V., 1958, “On heat exchange at
    Turbulent flow of liquid in pipes,” Teploenergetika, vol. 4 ,pp.
    63-68. Quoted in Bergman, et al. [2011]. Fundamentals of Heat
    and Mass Transfer, John Wiley & Sons.
    Pitla, S.S., Groll, E.A., Robinson, D.M., and Ramadhyani, S., 1998,
    “Heat transfer from supercritical carbon dioxide in tube flow: a
    Critical review,” HVAC&R Research, vol. 4, pp. 281-301.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat
    Transfer from in-tube flow of turbulent supercritical carbon
    dioxide: Part 1-Numerical analysis,” HVAC&R Research, vol. 7,
    pp. 345-366.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat
    transferfrom in-tube flow of turbulent supercritical carbon
    dioxide: part 2-experimental data and numerical predictions,”
    HVAC&R Research, vol. 7, pp. 367-382.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2002, “New correlation
    To predict the heat transfer coefficient during in-tube cooling of
    Turbulent supercritical CO2,” International Journal of
    Refrigeration, vol. 25, pp. 887-895.
    REFPROP. NIST Standard Reference Database 23, Version 9.0
    Sieder, E. N., and G. E. Tate.1936, “Heat Transfer and Pressure Drop
    of Liquids in Tubes, ” Ind. Eng. Chem, vol. 28 (12), pp. 1429-
    1435. Quoted in Bruggs and Young [1969]
    Son, C.H., and Park, S.J., 2006, “An experimental study on heat
    transfer and pressure drop characteristics of carbon dioxide
    during gas cooling process in a horizontal tube,” International
    Journal of Refrigeration, vol. 29, pp. 539-546.
    U.S. DOE-EIA Annual Energy Survey
    Yoon, S.H., Kim, J.H., Hwang, Y.W., Kim, M.S., Min, K., and Kim,
    Y., 2003, “Heat transfer and pressure drop characteristics during
    the in-tube cooling process of carbon dioxide in the supercritical
    region,” International Journal of Refrigeration, vol. 26, pp. 857-
    864.
    Zhao. C.R., P.X. Jiang., 2011,” Experimental study of in-tube cooling
    heat transfer and pressure drop characteristics of R134a at
    supercritical pressures,” Experimental Thermal and Fluid
    Science., vol. 35, pp. 1293-1303.
    王啟川,2007,熱交換器設計,五南圖書出版有限公司,台
    北。
    中華民國100 年能源統計手冊,經濟部能源局,2011。
    郭啟榮、羅聖宗,2012,低溫熱能發電系統現況與展望,能源
    報導,31-34 頁。

    QR CODE
    :::