| 研究生: |
張奇喆 Chi-Che Chang |
|---|---|
| 論文名稱: |
超臨界R-410A與R-32熱傳及壓降性能之研究 |
| 指導教授: | 楊建裕 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 超臨界 、R-410A 、R-32 、熱傳 、壓降 |
| 外文關鍵詞: | Supercritical, R-410A, R-32, Heat Transfer, Pressure Drop |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗的方式研究R-410A與R-32,在圓管6.5mm中穿越超臨界區域的加熱熱傳及壓降特性。R-410A壓力分別為5.0 MPa與5.5 MPa,溫度從59oC-87oC。R-32壓力分別為5.8 MPa與6.5 MPa,溫度從65oC-87oC。流量分別為200 kg/m2s、400 kg/m2s、600 kg/m2s與800 kg/m2s。
在不同的擬臨界壓力下,擬臨界壓力越高,整體壓降會降低,但熱傳也降低,擬臨界壓力越低,整體壓降升高,熱傳也會升高。在R-410A與R-32不同流體的壓降與熱傳係數比較,R-410A與R-32的壓降相差很小,但熱傳係數方面,R-32的最高熱傳係數與R-410A的最高熱傳係數相差2000 W/m2-K。
In this paper, the heat transfer and pressure drop characteristics of R-410A and R-32 in the supercritical region of 6.5mm in the tube are studied experimentally. R-410A pressure was 5.0 MPa and 5.5 MPa, the temperature from 59oC-87oC. R-32 pressure was 5.8 MPa and 6.5 MPa, the temperature from 65oC-87oC. Flow rates were 200 kg / m2s, 400 kg / m2s, 600 kg / m2s and 800 kg / m2s, respectively.
At different pseudo - critical pressures, the higher the pseudo - critical pressure, the lower the overall pressure drop, but also reduce the heat transfer, the lower the pseudo - critical pressure, the overall pressure drop, heat transfer will increase. R-410A and R-32 different fluid pressure drop and heat transfer coefficient comparison, R-410A and R-32 pressure drop difference is very small, but the heat transfer coefficient, R-32 maximum heat transfer coefficient and the R- 410A of the maximum heat transfer coefficient difference of 2000 W / m2-K.
參考文獻
Baskov, V.L., Kuraeva, I.V., and Protopopov, V.S., 1977, “Heat
Transfer with the turbulent flow of a liquid under supercritical
pressure in tubes under cooling conditions”, High Temperature,
vol. 15, pp. 81-86.
Bergman, T. L., et al. 2011, “Fundamentals of heat and mass
transfer”, John Wiley & Sons.
Briggs, D. E., and Youn, E. H., “Modified Wilson plot techniques for
obtaining heat transfer correlations for shell and tube heat
exchangers”, Chemical Engineering Progress Symposium Series 65 (1969) 35–45.
Bringer, R.P. and Smith, J.M., 1957, “Heat transfer in critical
region”, AIChE Journal, vol. 3, pp. 49-55. Quoted in Yoon et
al.[2003]
Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of
supercritical carbon dioxide. Part 1. Experimental measuremen”,
International Journal of Refrigeration, vol. 27, pp. 736-747.
Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of
supercritical carbon dioxide. Part 2. Comparison of numerical
calculation with different turbulence models”, International
Journal of Refrigeration, vol. 27, pp. 748-760.
Dittus, F. W., and Boelter, L. M. K., 1930, “Heat Transfer in
Automobile Radiators of the Tubular Type,” University of
California, Berkeley, Publications on Engineering, Vol. 2, No.
13, pp. 443-461. Quoted in Bergman, et al. [2011].
Fundamentals of heat and mass transfer, John Wiley & Sons.
ENER-G-ROTORS, http://www.ener-g-rotors.com/waste-heat/
Garimella. S., B. Mitra., U. C. Andresen., Y. Jiang.,and B. M. Fronk.,
2005, “Heat transfer and pressure drop during supercritical
cooling of HFCrefrigerant blends ,” International Journal of Heat
and Mass Transfer, vol. 91, pp. 477-493.
Gnielinski, V., 1976, “New equation for heat and mass transfer in
Turbulent pipe and channel flow,” International Chemical
Engineering, vol. 16, pp. 359-368. Quoted in Bergman,
et al. [2011]. Fundamentals of Heat and Mass Transfer,
John Wiley & Sons.
Kays, W.M. and London, A.L., 1984, “ComPact Heat Exchangers,”
3rd ed.McGraw-Hill, New York.
Krasnoshchekov, E.A., Kuraeva, I.V., and Protopopov, V.S., 1969
“Local heat transfer of carbon dioxide under supercritical
pressure under cooling conditions”, Teplofizika Vysokikh
Temperatur, vol. 7, pp. 922-930. Quoted in Garimella. et al.
Liao, S.M. and Zhao, T.S., 2001, “An experimental investigation of
Forced convective heat transfer from supercritical carbon dioxide
in Horizontal mini/micro channels,” 35th National Heat Transfer
Conference.
Liao, S.M. and Zhao, T.S., 2002, “Measurements of heat transfer
coefficients from supercritical carbon dioxide flowing in
horizontal mini/micro channels,” Journal of Heats Transfer, vol.
124, pp. 413-420.
Liao, S.M. and Zhao, T.S., 2002, “An experimental investigation of
convection heat transfer to supercritical carbon dioxide in
miniature tubes,” International Journal of Heat and Mass
Transfer, vol. 45, pp.5025-5034.
Oh, H.K., Son, C.H., 2010, “New correlation to predict the heat
transfercoefficient intube cooling of supercritical CO2 in
horizontal macro-tubes,” Experimental Thermal and Fluid
Science, vol. 34, pp.1230-1241.
Olson, D.A., and Allen, D., 1998, “Heat transfer in turbulent
Supercritical carbon dioxide flowing in a heated horizontal
tube,” NISTIR 6234.
Petrov, N.E., Popov V.N., 1985, “Heat transfer and resistance of
carbon dioxide beingcooled in the supercritical region,” Thermal
Engineering, vol. 32, pp. 131-.134
Petrov, N.E., Popov, V.N., 1988, “Heat transfer and hydraulic
resistance with turbulent flow in a tube of water under
supercritical parameters of state,” Thermal Engineering, vol. 35,
pp. 577-580.
Petukhov, B.S., and Kirillov, V.V., 1958, “On heat exchange at
Turbulent flow of liquid in pipes,” Teploenergetika, vol. 4 ,pp.
63-68. Quoted in Bergman, et al. [2011]. Fundamentals of Heat
and Mass Transfer, John Wiley & Sons.
Pitla, S.S., Groll, E.A., Robinson, D.M., and Ramadhyani, S., 1998,
“Heat transfer from supercritical carbon dioxide in tube flow: a
Critical review,” HVAC&R Research, vol. 4, pp. 281-301.
Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat
Transfer from in-tube flow of turbulent supercritical carbon
dioxide: Part 1-Numerical analysis,” HVAC&R Research, vol. 7,
pp. 345-366.
Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat
transferfrom in-tube flow of turbulent supercritical carbon
dioxide: part 2-experimental data and numerical predictions,”
HVAC&R Research, vol. 7, pp. 367-382.
Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2002, “New correlation
To predict the heat transfer coefficient during in-tube cooling of
Turbulent supercritical CO2,” International Journal of
Refrigeration, vol. 25, pp. 887-895.
REFPROP. NIST Standard Reference Database 23, Version 9.0
Sieder, E. N., and G. E. Tate.1936, “Heat Transfer and Pressure Drop
of Liquids in Tubes, ” Ind. Eng. Chem, vol. 28 (12), pp. 1429-
1435. Quoted in Bruggs and Young [1969]
Son, C.H., and Park, S.J., 2006, “An experimental study on heat
transfer and pressure drop characteristics of carbon dioxide
during gas cooling process in a horizontal tube,” International
Journal of Refrigeration, vol. 29, pp. 539-546.
U.S. DOE-EIA Annual Energy Survey
Yoon, S.H., Kim, J.H., Hwang, Y.W., Kim, M.S., Min, K., and Kim,
Y., 2003, “Heat transfer and pressure drop characteristics during
the in-tube cooling process of carbon dioxide in the supercritical
region,” International Journal of Refrigeration, vol. 26, pp. 857-
864.
Zhao. C.R., P.X. Jiang., 2011,” Experimental study of in-tube cooling
heat transfer and pressure drop characteristics of R134a at
supercritical pressures,” Experimental Thermal and Fluid
Science., vol. 35, pp. 1293-1303.
王啟川,2007,熱交換器設計,五南圖書出版有限公司,台
北。
中華民國100 年能源統計手冊,經濟部能源局,2011。
郭啟榮、羅聖宗,2012,低溫熱能發電系統現況與展望,能源
報導,31-34 頁。