| 研究生: |
呂其倫 Chi-Lun Lu |
|---|---|
| 論文名稱: |
一般化non-square Cholesky 分解演算法運用在擔保債權憑證(CDO)之標的資產選擇 A generalized non-square Cholesky Decomposition Algorithm with Applications to choose the underlyings for Collateralized Debt Obligations |
| 指導教授: |
張傳章
Chuang-Chang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 關聯結構 、擔保債權憑證 、Cholesky分解 、Spectral分解 |
| 外文關鍵詞: | Collateralized Debt Obligation, Copula, Cholesky Decomposition, Spectral decomposition |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
擔保債權憑證(CDO)是一種相關性的商品。這個商品的各切層價格反映多資產間聯合違約機率的相關性,因此投資人面臨相關性的風險。投資人必須去衡量這些風險,才能正確的去決定各層的公平價值。在CDO的產品中,去分解相關性矩陣來計算相關性,最常見的技巧是使用Cholesky分解。然而,Cholesky分解只能在矩陣為正定時使用。在本篇論文中,我們認為Spectral分解將可以克服上述的缺點。使用Spectral分解將一定可以獲得多資產蒙地卡羅模擬所需要的矩陣。在Cholesky分解和Spectral分解均可執行時,他們所獲的的模擬結果也將是一致的。而當Cholesky 分解不能執行時(矩陣有負的eigenvalue), Spectral分解可以獲得模擬所需的矩陣,也可以清楚的衡量出模擬結果的好壞。
CDO is a correlation product. The investors of this product involve correlation risks since the prices of respective tranches depend on joint default correlations. To determine a fair return for bearing the correlation risks, the investors must be able to measure these risks. The most common skill used to decompose the correlation
matrix for CDO products is the Cholesky decomposition. However, the Cholesky decomposition can only work for the case of a positive matrix. In this paper, we propose a Spectral decomposition which can overcome the shortcomings of the Cholesky decomposition. Spectral decomposition can always obtain matrix that Monte Carlo simulations need. Spectral decomposition will have consistent results if Cholesky decomposition can work. If Cholesky decomposition can not work (matrix has negative
eigenvalues), Spectral decomposition can still obtain a matrix that is able to measures the simulation results not matter good or bad.
References
[1] Arvanitis A. and Gregory J. (2001) ”Credit: The Complete Guide to Pricing,
Hedging and Risk Management” Risk Books
[2] Cambanis S., Huang S. and Simons G. (1981) ”On the theory of elliptically
contoured distributions” Journal of Multivariate Analysis, 11, 368-385
[3] Cifuentes, A. and C. Wilcox. (1998) ”The double binomial method and its
application to a special case of CBO structures”, Moody’s Special Report.
[4] Cook R. D. and Johnson M. E. (1981) ”A family of distribution for modeling
non-elliptically symmetric multivariate data” Journal of the Royal Statistical
Society, B, 43, n.2, 210-218
[5] Fang K. T., Kotz S. and Ng W. (1987) ”Symmetric multivariate and related
distributions” Chapman & Hall, London
[6] Fermanian, J. and Scaillet O. (2003) ”Nonparametric estimation of copulas for time series”, Journal of Risk 5, No 4, 25-54
[7] Hull J. and White A. (2000) ”Valuing credit default swap: no counterparty
default risk” Journal of Derivatives, 29-40
[8] Joe H. (1997) ”Multivariate models and dependence concepts” Chapman and
Hall, London
[9] J.P. Morgan Guide to Credit Derivatives (2000) Risk
[10] Li D. X. (1998) ”Constructing a credit curve” Risk, Special report on Credit Risk, Nov. 1988, 40-44
[11] LI, D. X (2000) ”On Default Correlation: A Copula Function Approach”; The Journal of Fixed Income 6, 43-54, March
[12] Lucas, Douglas. (2001) ”CDO Handbook”, JP Morgan Securities, Inc.
[13] Marshall A. W. and Olkin I. (1988) ”Families of multivariate distributions”Journal of the American Statistical Association, 834-841
[14] Meneguzzo D. and Vecchiato W. (2004) ”Copula Sensitivity in Collateralized Debt Obligations and Basket Default Swaps Pricing and Risk Monitoring” Risk Management IntesaBci,Journal of Futures Markets,37-70
[15] Merton R. (1974) ”On the pricing of corporate debt: the risk structure of
interest rate” Journal of Finance, 449-470
[16] Nash, J. C. (1990) ”The Choleski Decomposition.” Ch. 7 in Compact
22 Numerical Methods for Computers: Linear Algebra and Function Minimisation”,
2nd ed. Bristol, England: Adam Hilger, 84-93
[17] Nelsen R. B. (1999) ”An introduction to copulas” Springer-Verlag, NY
[18] Nicholas J. Higham (1988) ”Computing a Nearest Symmetric Positive
Semidefinit Matrix”, Linear Algebra and Its Applications, 103, 103-118
[19] O’Kane D. (2001) ”Credit Derivatives Explained” Lehman Brothers, research paper
[20] Oliver Reiß. (2002) ”A generalized non-square Cholesky Decomposition
Algorithm with Applications to Finance”, Weierstrass-Institute, working paper.
[21] Riccardo Rebonato. (1998) ”Interest rate option models”, Jon Wiley and Sons
[22] Riccardo Rebonato. (1999) ”Calibration of the BGM model”, Risk, March,
74-79
[23] Riccardo Rebonato. (1999) ”On the simultaneous calibration of multifactor
lognormal interest rate models to Black volatilities and to the correlation matrix”,Journal of computational finance
[24] Riccardo Rebonato. (1999) ”Volatility and Correlation”, Jon Wiley and Sons
[25] Riccardo Rebonato and Peter Jackel. (1999) ”The most general methodology to create a valid correlation matrix for risk management and option pricing purposes”, Quantitative Research Centre of the NatWest Group, October.
[26] Shu-Ying, Lin (2004) ”Two Essays on Credit Derivatives:CB Asset Swap and
CDO” National Central University,Taiwan
[27] Sklar, A. (1959) ”Functions de repartition a n dimensions et leurs marges” Publications de l’Insitute Statistique de l’Universit’e de Paris 8, 229-231
[28] Sklar, A (1973) ”Random Variables”, Joint Distribution Functions and Copulas; Kybernetika 9, 449-460