跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宗儒
Zong-ru Li
論文名稱: 以矽鍺為材料,用於850nm短距光纖通訊超高增益頻寬積(428GHz)的累增崩潰光二極體
Using SiGe based avalanche photodiode operating at a wavelength of 850 nm with a gain-bandwidth product of 428 GHz
指導教授: 許晉瑋
JIN-WEI SHI
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 累增光二極體矽鍺
外文關鍵詞: photodiode, SiGe.avalanche
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文研究中,我們提出了一個可操作在830nm波段的矽-矽鍺垂直入射的雪崩光二極體。我們的元件可以藉由操作在崩潰區而最小化因N型基板所產生的擴散電流而造成的低頻roll-off的問題,同時也可以藉由衝擊離子的效應而產生高輸出頻寬。所以我們的元件可以在不使用複雜的SOI技術之下,而達到高輸出頻寬(15.3GHz)以及極高的增益頻寬積(428GHz)。


    In this thesis, we demonstrate a high-performance Si–SiGe-based vertical-illuminated avalanche photodiode (APD) operating in the 830-nm wavelength regime. Under avalanche operation, the low-frequency roll-off caused by the slow diffusion current from the n+ silicon substrate can also be minimized. Also, our device can achieved high bandwidth due to impact-ionization-induced resonant effect. So, a wide bandwidth (15.3 GHz) and an extremely high gain-bandwidth (428 GHz) can be achieved simultaneously in our device without using complex silicon-on-insulator or germanium-on-insulator substrates.

    中文摘要........................ Ⅰ 英文摘要........................ Ⅱ 目錄.......................... Ⅲ 圖目錄......................... Ⅴ 表目錄......................... Ⅷ 一、 導論.................... 1 1-1 光纖通訊的歷史............... 1 1-2 光纖通訊的應用............... 4 1-3 論文架構.................. 6 二、 分離式吸收、傳輸、電荷、累增之矽鍺雪崩光二極體的設計.. 7 2-1 研究背景.................. 7 2-2 元件應用.................. 9 2-3 光二極體基本原理.............. 10 2-4 光二極體的結構分類............. 12 2-4-1 磊晶結構.................. 12 2-4-2 幾何結構.................. 12 2-5 傳統的PIN光二極體............. 15 2-6 傳統的矽基底雪崩光二極體.......... 18 2-7 分離式吸收、傳輸、電荷、增益之矽鍺雪崩光二極體 ..... 21 2-7-1 磊晶介紹.................. 21 2-7-2 如何消除低頻3dB頻寬衰減而不使用SOI技術.. 24 2-7-3 降低因元件操作在崩潰區所產生的3dB頻寬衰減. 25 三、 分離式吸收、電荷、傳輸、增益之矽鍺雪崩光二極體的製程步驟....... 28 四、 量測結果與討論............... 37 4-1 光波網路分析儀(光網儀)量測系統....... 37 4-2 光電流與光響應度量測結果.......... 38 4-3 頻寬量測結果................ 40 五、 結論.................... 50 參考文獻....................... 51

    [1] http://www.oki.com/en/press/2002/z02059e.htm
    [2] http://www.mfa-optics.com/dor.htm
    [3] http://www.soon-link.com.tw/html/index.htm
    [4] H.Nie, et al ”Resonant-Cavity Separate Absorption, Charge and Multiplication Avalanche Photodiodes With High-Speed and High Gain-Bandwidth Product”, IEEE Photon. Technol. Lett.,vol.10, pp.409-411, 1998
    [5] Yoshio Mita, et al “Deep-Trench Vertical Si Photodiodes for Improved
    Efficiency and Crosstalk” IEEE J. of Sel. Topics in
    Quantum Electronics, vol.13, pp386-391,2007
    [6] Steven J. Koester, et al ”Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications”, IEEE J. Lightwave Technol, vol.25,pp46-57,2007
    [7] M. W. Geis, et al ” CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band”, IEEE Photon. Technol. Lett.,vol.19, pp.152-154, 2007
    [8] Zhihong Huang, at al “21-GHz-Bandwidth Germanium-on-SiliconPhotodiode Using Thin SiGe Buffer Layers”, IEEE J. of Sel. Topics in
    Quantum Electronics, vol.12, pp1450-1454,2006
    [9] T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
    [10] K.Kato, “Ultrawide-Band/High-Frequency Photodetectors”,IEEE Trans. Microwave Theory Tech., vol.47, pp1396-1398,2000
    [11] J. C. Campbell, et al “Recent Advances in Avalanche Photodiodes” IEEE J. of Sel. Topics in Quantum Electronics, vol 10, pp777-787,2004
    [12] Donald A. Neamen “Semiconductor physics & Device Basic Principle”third edition, 2002
    [13] M. Yang, et al “A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector” IEEE Electron Device Lett., vol.23,pp395-397,2002
    [14] B. Yang, et al “10-Gb/s All-Silicon OpticalReceiver” IEEE Photon. Technol. Lett., vol.15, pp745-747,2003
    [15] G. Dehlinger, et al “High-Speed Germanium-on-SOI
    Lateral PIN Photodiodes” IEEE Electron Device Lett., vol.16, pp2547-2549,2004
    [16] J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structure”, CAMBRIDGE UNIVERSITY PRESS, 2003
    [17] C. Li, et al“Back-incident SiGe–Si multiple quantum-well resonantcavity-enhanced photodetectors for 1.3-μmoperation” IEEE Photon.Technol. Lett., vol.12, pp1373–1375,2000.
    [18] D. Buca, et al “Fast time response from Si–SiGe undulating layer
    supperlatices” Appl. Phys. Lett., vol.80, pp4172-
    4174,2002.
    [19] E. Quinones, et al “Enhanced mobility PMOSFET’s using tensile-strained Si C layers” IEEE Electron Device Lett., vol.20, pp338–340,1999.
    [20] A. R. Hawkins, Ph. D. Thesis, University of California at Santa Barbara, 1998
    [21] H. Nie, et al “Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol.10, pp409–411, 1998.
    [22] S. M. Sze, Physics of Semiconductor Device, John Wiley & Sons, New York,1981.
    [23] M. Tschernitz, et al “GaAs Read-type IMPATT diodes for D-band”, IEEE Electron Lett., vol.30,pp1070-1071,1994
    [24] Jin-Wei Shi, et al “Design and Analysis of Separate
    Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors”, IEEE J. Lightwave
    Technol,vol.22,pp15831590,2004
    [25] G. S. Kinsey, et al “Waveguide avalanche photodiode operating at 1.55μm with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett., vol.13, pp842–844, 2001
    [26] Y.-S. Wu, et al “Analytical modeling of a high erformance near-ballistic uni-traveing-carrier photodiode at a 1.55μm wavelength ,” IEEE Photon. Technol. Lett., vol.18, pp938–940, 2006

    QR CODE
    :::