跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏子茜
Tzu-Chien Yen
論文名稱: 以達治療溫度為基礎的高強度聚焦超聲波燒灼路徑規劃
指導教授: 曾清秀
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 超聲波影像輔助導引系統高強度聚焦超聲波路徑規劃熱治療
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高強度聚焦超聲波(High-intensity Focused Ultrasound, HIFU) 治療和傳統開刀手術相比,有非侵入性、無輻射和流血量少的優勢,目前已知的應用有乳房、肝臟和前列腺等的腫瘤治療。其作用的機制主要是以機械效應和熱效應在生物體內產生高溫,使得細胞產生不可逆的凝固性壞死。燒灼時因為路徑點的初始溫度皆不同,因此如果以相同的燒灼時間,則會產生剛開始的路徑點燒灼時間不足,而其餘的路徑點因為熱擴散的影響燒灼時間過長,傷害到周圍的正常組織。
    本研究的目的是建立達治療溫度為基礎的HIFU燒灼路徑規劃系統,透過超聲波影像建構腫瘤的三維模型並取得其空間座標,結合機械手臂的運動控制,讓機械手臂自動移動HIFU換能器,將HIFU聚焦點定位在腫瘤上進行熱治療。考量腫瘤形狀和熱在生物體內擴散的情形,規劃路徑點的間距和路徑行進的方式,以術前模擬推斷燒灼成效和縮短燒灼時間。
    實驗部分以仿人體衰減係數的蛋白仿體和豬肉組織為假體,先測量燒灼點在介質中可能產生的位置偏移,其平均定位誤差為1.22 ± 0.42mm。再將熱電偶以線性和八相鄰的排列方式量測燒灼點周遭的溫升情形,以此作為路徑規劃時熱擴散的依據。最後,依照路徑形式和計算出來的單點停留時間,以機械手臂移動HIFU換能器對假體進行燒灼,以假體中產生變異的區域和模擬的燒灼區域做對照。實驗結果顯示螺旋向外路徑所需的燒灼時間最短,且其熱擴散影響也較容易控制,而S形路徑則在邊界的路徑點上容易產生不可預期的燒灼結果,但兩種路徑都大致能完全覆蓋預定的區域,此結果表示溫度估測的方法可以用來預測燒灼時間。


    Compared with traditional tumor treatments, there are lots of advantages of using HIFU (High-intensity focused ultrasound) as a treatment method, such as noninvasiveness, radiation-free, woundless and faster recovery. HIFU has been successfully applied in treatment of solid tumors such as breast, liver, uterine fibroids, kidney, prostate, and brain.
    In this study, we have developed a HIFU therapy system which is based on the achievement of temperature needed. With the assistance of B-mode ultrasonography, optic tracking, and robot navigation, we can build three dimension model of the tumor, access its spatial coordinate and position the focal point of HIFU on the tumor for further thermal treatment. Moreover, by considering of the thermal diffusion in the organism, both spiral and s-shape pathways can be planned prior to treatment to estimate the desired treatment time.
    In-vitro protein phantom was used in the experiment to measure positioning accuracy of HIFU focal point. Temperature distribution surrounding the heating pattern during the heating of in-vitro protein phantoms and ex-vivo porcine tissues were measured via an eight-channel thermocouple system. Moreover, the treatment time for each targeted positions of the planned treated trajectory were automatically controlled to reach the targeted temperature and then moved to the next planning targeted position by the robot controller. Results showed that the averaged positioning error is 1.22 ±0.42mm. Compared the coagulation areas of the ablated phantom to different preplanned trajectories, the spiral trajectory can save the most of time and the thermal diffusion is evenly spread. However, s-shape heating trajectory required a longer treatment time and cause unpredictable result on the boundary. Yet, two heating trajectories both provide satisfactory treatment region coverage. In conclusion, this study provides insight and valuable knowledge when applying HIFU to treat large tumor volume in future clinical application.

    摘要 i ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 xi 第1章 緒論 1 1-1 前言 1 1-1-1 超聲波與生物體相互作用的基本原理 1 1-1-2 HIFU介紹 4 1-1-3 HIFU熱治療發展與應用 4 1-2 研究動機 5 1-3 文獻回顧 5 1-3-1 HIFU聚焦點定位 5 1-3-2 熱治療溫度量測 7 1-3-3 燒灼時間和路徑規劃 8 1-4 研究方法簡介 10 1-5 論文介紹 11 第2章 系統架構與流程 12 2-1 系統作業流程 12 2-2 硬體架構 13 2-2-1 高強度聚焦超聲波換能器與匹配電路 14 2-2-2 訊號產生器和RF功率放大器 14 2-2-3 診斷用超聲波影像系統 14 2-2-4 溫度量測儀器 14 2-2-5 光學式定位器 15 2-2-6 機械手臂與控制器 15 2-3 軟體架構 15 第3章 研究方法 17 3-1 座標系統 17 3-1-1 座標系定義 17 3-1-2 座標系統轉換 18 3-2 超聲波影像與定位器註冊 19 3-3 三維模型重建與重切 21 3-3-1 超聲波立體影像重建 21 3-3-2 腫瘤模型重切 23 3-4 HIFU燒灼過程規劃 23 3-4-1 規劃路徑點 23 3-4-2 規劃路徑形式 24 3-5 系統模擬 25 3-5-1 溫度估測 26 第4章 實驗結果及討論 31 4-1 實驗材料 31 4-1-1 燒灼用之蛋白仿體 31 4-2 燒灼點位置補償實驗 33 4-3 燒灼點與周遭路徑點溫度分布實驗 36 4-3-1 二維熱擴散實驗 36 4-3-2 一維熱擴散實驗 38 4-4 燒灼時間估算 46 4-4-1 線性路徑 47 4-4-2 S形路徑 54 4-4-3 螺旋向外路徑 61 第5章 結論與未來展望 69 參考文獻 70

    [1] G.J. Lynn, R.L. Zwemer, A.J. Chick, and A.E. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” The Journal of General Physiology, vol. 26, pp. 179-193, 1946.
    [2] W.J. Fry and F.J. Fry, “fundamental neurological research and human neurosurgery using intense ultrasound,” IRE Transactions on Medical Electronics, vol. ME-7(3), pp. 166-181, 1960.
    [3] H. Pauly and H.P. Schwan, “Mechanism of absorption of ultrasound in liver tissue,” The Journal of the Acoustical Society of America, vol. 50, pp. 692-699, 1971.
    [4] W.C. Dewey, D.E Thrall, and E.L. Gillette, “Hyperthermia and radiation – a selective thermal effect on chronically hypoxic tumor cells in vivo,” International Journal of Radiation Oncology Biology Physics, vol. 2(1-2), pp. 99-103, 1977.
    [5] R. Maass-Moreno, C.A. Damianou, and N.T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model,” The Journal of the Acoustical Society of America, vol. 100, pp. 2515-2521, 1996.
    [6] R. Maass-Moreno, C.A. Damianou, and N.T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” The Journal of the Acoustical Society of America, vol. 100, pp. 2522-2523, 1996.
    [7] A.V. Zaitsev, N.T. Sanghvi, S. Ikenberry, J.F. Worzalla, R.M. Schultz, and T.D. Self, “High intensity focused ultrasound(HIFU) treatment of human pancreatic cancer,” IEEE Ultrasound Symposium, San Antonio ,TX, pp. 1295-1298, 1996.
    [8] M.M. Paul, D.C. Mark, and R.H. Gail, “The intensity dependence of lesion position shift during focused ultrasound surgery,” Ultrasound in Med. & Biol., vol. 26, no. 3, pp. 441-450, 2000.
    [9] H. Tang, C.C. Wang, D. Blankschtein, and R. Langer, “An investigation of the role of cavitation in low-frequency ultrasound –mediated transdermal drug transport,” Pharm Res, vol. 19(8), pp. 1160-1169, 2002.
    [10] W.S. Chen, C. Lafon, T.J. Matula, and S. Vaczy, “Mechanisms of lesion formation in high intensity focused ultrasound therapy,” Ultrasonics Symposium, vol. 2, pp. 1443-1446, 2002.
    [11] K. Takegami, Y. Kaneko, T. Watanabe, T. Maruyama, Y. Matsumoto, and H. Nagawa , “Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound,” Ultrasound in Medicine and Biology, vol. 30, pp. 1419-1422, 2004.
    [12] U. Techavipoo, Q. Chen, and T. Varghese, “Ultrasonic noninvasive temperature estimation using echoshift gradient maps: simulation results,” Ultrason Imaging, vol. 27, pp. 166-180, 2005.
    [13] Y.S. Tung, H.L. Liu, C.C. Wu, K.C. J u, W.S. Chen, and W.L. Lin, “Contrast-agent-enhanced ultrasound thermal ablation,” Ultrasound in Medicine and Biology, vol. 32, pp. 1103-1110, 2006.
    [14] Y. Zhou, S.G. Kargl, K. Kim, and J.H. Hwang, “Comparison of pathway in high intensity focused ultrasound lesion production,” The Journal of the Acoustical Society of America, vol. 122(5), pp. 3007, 2007.
    [15] C.C. Wu, C.N. Chen, M.C. Ho, W.S. Chen, and P.H. Lee, “Using the acoustic interference pattern to locate the focus of a high-intensity focused ultrasound (HIFU) transducer,” Ultrasound in Med. & Biol., vol. 34, pp. 137-146, 2008.
    [16] X.Q. Jian, L.S. Wu, Z.H. Li, and J.G. Yin, “Temperature field FDTD simulation of HIFU in human body tissues,” The 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Shanghai, pp. 759-762, 2008.
    [17] Y.S. Kim, H. Rhim, M.J. Choi, H.K. Lim, and D. Choi, “High-intensity focused ultrasound therapy: An overview for radiologists,” Korean Journal of Radiology, vol. 9(4), pp. 291-302, 2008.
    [18] K.H. Lin, S.Y. Young, M.C. Hsu, H. Chan, Y.Y. Chen, and W.L. Lin, “Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback,” 30th Annual International IEEE EMBS Conference, Vancouver ,BC, pp. 2522-2525, 2008.
    [19] M.S. Canney, M.R. Bailey, and L.A. Crum, “Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach,” The Journal of the Acoustical Society of America, vol. 124(4), pp. 2406-2420, 2008.
    [20] 王修含,「以光聲效應為主之雷射光熱治療定量式熱影像」, 碩士論文,台灣大學 生醫電子與資訊學研究所,2009。
    [21] C.H. Farny, R.G. Holt, and R.A. Roy, "The correlation between bubble-enhanced HIFU heating and cavitation power," IEEE Transactions on Biomedical Engineering, vol. 57(1), pp. 175-184, 2010.
    [22] J. Seo, N. Koizumi, K. Yoshinaka, N. Sugita, A. Nomiya, Y. Homma, Y. Matsumoto, and M. Mitsuishi, “Three-dimensional computer-controlled acoustic pressure scanning and quantification of focused ultrasound,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, pp. 883-891, 2010.
    [23] D. Li, G. Shen, H. Luo, J. Bai, and Y. Chen, “A study of heating duration and scanning path in focused ultrasound surgery,” Journal of Medical Systems, vol. 35(5), pp. 779-786, 2011.
    [24] Y. Zhou, “Generation of uniform lesions in high intensity focused ultrasound ablation,” Ultrasonics. Vol. 53(2), pp. 495-505, 2013.
    [25] 安治宇,「應用於肝腫瘤治療之超音波影像輔助機械手臂HIFU燒灼系統」,博士資格考,中央大學 機械工程研究,2013。
    [26] 許家豪,「應用於HIFU熱治療之超音波影像輔助機械手臂定位系統」, 碩士論文,中央大學 生物醫學工程研究所,2014。

    QR CODE
    :::