| 研究生: |
陳佳柏 Chia-Po Chen |
|---|---|
| 論文名稱: |
模擬注流式生物反應器之細胞培養研究 |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 軟骨細胞 、化學趨向性 、細胞遷移 、注流 、隨機漫步 、細胞生長 |
| 外文關鍵詞: | chemotaxis, cell growth, perfusion, migration, random walk, chondrocytes |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文多孔性介質的概念並加入細胞化學趨向與隨機漫步的特性來建立一數學模型,包含了連續方程式、動量守恆方程式、細胞質量守恆方程式以及養份濃度守恆方程式來描述細胞在多孔性支架中的培養情況,並分為靜置式培養模擬與注流式培養模擬。其中靜置式培養是模擬傳統培養皿的培養環境,並與之前學者的實驗數據做比對來驗證數學模型的正確性。注流式培養是模擬支架置於注流式生物反應器中,以注流的方式將培養細胞時所需的養分利用對流的特性帶入支架中,彌補傳統養分擴散的缺點,並以其為模擬系統使得模擬的結果可以定性的描述整個物理現象、建立預測並提供實際培養時的參考。在模擬中顯示,細胞在有注流影響下所得到的平均總量會比靜置式培養來的多,且隨著對流速度的增加而更明顯但最後會趨向一漸進值。細胞所具有的化學趨向移動行為與隨機漫步運動均會影響細胞在培養時的數量上的多寡,且隨著流場注流效果的增加而產生不同的物理現象。
This article uses a porous-medium approach, combining chemotaxis and random walk of the cells, to develop a mathematical model, which comprises the continuity equation, momentum equation, cell conservation equation and nutrient conservation equation to describe the growth of chondrocytes in porous scaffolds. Two cases of simulation are performed: static culture and perfusion culture. We use the results of the simulation of the static culture to compare with the experimental studies reported previously. In the perfusion flow case, we simulate the cell growth in a perfusion bioreactor. The results can qualitatively describe the physical phenomena, set up the prediction and offer the actual cultivated reference. The amount of cells in the perfusion culture is more than in static culture and increase with the velocity of perfusion, and it will tend to a constant as the perfusion is intensified. We find the properties of chemotaxis and random walk will influence the growth of cells, and they may reveal different effects when the perfusing is getting stronger.
Bush, P.G. and Hall, A.C., 2001. Regulatory Volume Decrease (RVD) by Isolated and In Situ Bovine Articular Chondrocytes. Journal of Cellular Physiology 187: 304-314.
Brown, T.D., 2000.Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics 33: 3-14.
Contois, D.E., 1959. Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol 21: 40-50.
DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S.M., and Lauffenburger, D.A., 1993. Maximal Migration of Human Smooth Muscle Cells on Fibronectin and Type IV Collagen Occurs at an Intermediate Attachment Strength. The Journal of Cell Biology 122: 729-737.
Freed, L.E., Vunjak-Novakovic, G., and Langer, R., 1993. Cultivation of Cell-Polymer Cartilage Implants in Bioreactors. Journal of Cellular Biochemistry 51: 257-264.
Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., and Langer R. 1994. Kinetics of Chondrocyte Growth in Cell-Polymer Implants. Biotechnology and Bioengineering 43: 597-604
Goldstein, A.S., Juarez, T.M., Helmke, C.D., Gustin, M.C., Mikos, A.G., 2001. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22: 1279-1288.
Galban, C.J., and Locke, B.R., 1999a. Analysis of Cell Growth Kinetics and Substrate Diffusion in a Polymer Scaffold. Biotechnology and Bioengineering 65(2): 121-132.
Galban, C.J., and Locke, B.R., 1999b. Effects of Spatial Variation of Cells and Nutrient and Product Concentrations Coupled with Product Inhibition on Cell Growth in a Polymer Scaffold. Biotechnology and Bioengineering 64(6): 633-643.
Hillesdon, A.J., Pedley, T.J., and Kessler, J.O., 1995. The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57: 299-344.
Langer, R., Vacanti, J.P., 1993. Tissue engineering. Science 260(5110): 920-926.
Lind, M., Deleuran, B., Yssel, H., Eriksen, E.F., and Pedersen, K.T., 1995. IL-4 and IL-13, but Not IL-10, are Chemotactic Factors For Human Osteoblasts. Cytokine 7(1): 78-82.
Lind, M., Eriksen, E.F., and Bunger, C., 1996. Bone Morphogenetic Protein-2 but not Bone Morphogenetic Protein-4 and -6 Stimulates Chemotactic Migration of Human Osteoblasts, Human Marrow Osteoblasts, and U2-OS Cells. Bone 18(1): 53-57.
Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., and Freed, L.E., 2001. Enhanced Cartilage Tissue Engineering by Sequential Exposure of Chondrocytes to FGF-2 During 2D Expansion and BMP-2 During 3D Cultivation. Journal of Cellular Biochemistry 83: 121-128.
Nield, D.A., and Bejan, A, 1992. Convection in Porous Media, Springer-Verlag, New York.
Obradovic, B., Carrier, R.L., Vunjak-Novakovic, G., Freed, L.E., 1999. Gas Exchange is Essential for Bioreactor Cultivation of Tissue Engineered Cartilage. Biotechnology and Bioengineering 63(2): 197-205.
Pazzano, D., Mercier, K.A., Moran, J.M., Fong, S.S., DiBiasio, D.D., Rulfs, J.X., Kohles, S.S., and Bonassar, L.J., 2000. Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnol. Prog. 16(5): 893-896.
Shreiber, D.I., Barocas, V.H., and Tranquillo, R.T., 2003. Temporal Variations in Cell Migration and Traction during Fibroblast-Mediated Gel Compaction. Biophysical Journal 84: 4102–4114.
Shin, H., Zygourakisb, K., Carsonc, M.C.F., Yaszemskid, M.J., Mikos, A.G., 2004. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterial 25: 895-906
Sucosky, P., Osorio, D.F., Brown, J.B., Neitzel, G.P., 2003. Fluid Mechanics of a Spinner-Flask Bioreactor. Biotechnology and Bioengineering 85(1): 34-46.