| 研究生: |
洪瑞駿 Ruei-Jiun Hung |
|---|---|
| 論文名稱: |
利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性 |
| 指導教授: |
馬國鳳
Kuo-Fong Ma 陳伯飛 Po-Fei Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 臺灣車籠埔深鑽計畫 、非均向性 、車籠埔斷層 、尾波交相關法 、剪力波分離 |
| 外文關鍵詞: | Taiwan Chelungpu-fault Drilling Project, Anisotropy, Chelungpu fault, Coda cross correlation, Shear wave splitting |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
集集地震(Mw7.6)過後,為了更深入了解該地震之物理特性,台灣車籠斷層埔深鑽計畫(Taiwan Chelungpu-fault Drilling Project, TCDP)於2004年起執行。七部井下地震儀(TCDPBHS)組成之垂直陣列隨後被安裝在跨斷層帶位置以監控區域微地震。本研究利用TCDPBHS陣列探討集集地震後斷層帶的非均向性。方法部分,我們考慮尾波交相關法進行分析。相較於噪訊交相關函數來說,尾波能提供更均勻的散射波場以幫助我們得到更可靠的格林函數。本研究使用陣列最上部的地震儀做為虛擬震源並審慎定義尾波長度進行分析。從走時圖及粒子運動結果證明所得到的交相關波形屬於剪力波後,我們便將尾波以每5˚做水平旋轉並計算交相關以檢視方位角非均向性。其結果發現,斷層帶上磐的剪力波快軸方向大約為130˚,然而在斷層帶-下磐範圍則轉至160˚。此外本研究亦使用剪力波分離法(SWS)進行分析,在使用了94個入射角小於30˚的微地震後,所得到的快軸方向(~110˚)大致上與台灣的板塊聚合方向類似,然而利用該方法並無在斷層帶觀察到旋轉情形,此原因可能是由於震源-測站距離遠大於測站間距,以致無法清楚解析所致; 利用上磐的BHS1及BHS5之剪力波分離得到該地區非均向性程度約為6.4%。大致上來說,利用尾波交相關法幫助我們得到可靠的S波經驗格林函數,且觀察到斷層帶之非均向性,此結果也與前人進行現地量測的結果相似,暗示利用非侵入性的地震波觀測,也能有機會得到小尺度的構造特性。相較於高成本的井測分析,地震波觀測或許也為一可行之方法做為地下構造辨析。
The Taiwan Chelungpu-fault Drilling Project (TCDP) was operated to understand the fault zone characteristics after the 1999 Mw7.6 Chi-chi earthquake. Seven Borehole Seismometers (TCDPBHS) were installed through the identified fault zone (~1.1 km) to monitor the seismic activities and the fault-zone structure properties. This study aims to reveal the fault zone anisotropy after the Chi-chi earthquake. The method used here is coda cross correlation which is feasible for retrieving the reliable empirical Green’s function since coda waves are generated from multi-scattering. We use the top sensor as the virtual source, and the length of coda are also carefully determined before cross correlation. After confirming these cross correlation waveforms are really in presence of S wave Green’s function by examining the traveltime and particle motion analysis, we rotate the coda wave at horizontal components by every 5˚ to obtain the azimuthal anisotropy. Results indicate the fast shear wave direction in the hanging-wall site is about 130˚. However, the fast shear wave direction rotates to 160˚ in the fault zone and the foot-wall-side area. Shear wave splitting method (SWS) from local micro-events is also considered in this study. After checking the data in 2007, 94 events with incidence small than 30˚ are used. The obtained fast shear wave polarizations (FSP) at this area are generally consistent with direction of tectonic convergence (NW-SE) in Taiwan. However, no significant rotation of FSPs recorded at fault-zone station are observed, this might because of the short inter-station distance which unables shear waves to change the polarization. Totally 6.4% of anisotropy is obtained. Coda CCFs can retrieve a stable Green’s function to unveil the fault-zone anisotropy, and this result is also in agree with those identified from in-situ measurement. This means small scaled anisotropy can be revealed via seismic observation. Compare to well-logging, which are usually costly, anisotropy from seismic observation might be a good approach that will be more economical.
Bensen, G.D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169, 1239-1260, 2007.
Bowman, J. R., and M. Ando. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys. J. R. astr. Soc., 88, 25-41, 1987.
Crampin, S, R. Evans, B. Üçer, M. Doyle, J. P. Davis, G. V. Yegorkina , and A. Miller. Observations of dilatancy-induced polarization anomalies and earthquake prediction. Nature, 286, 874 – 877, 1980.
Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophys., 50, 1, 142-152, 1985.
Crampin, S. Suggestions for a consistent terminology for seismic anisotropy, Geophys. Prosp., 37, 753-770, 1989.
Crampin, S., and H. Lovell. A decade of shear-wave splitting in the Earth’s crust: what does it mean? what use can we make of it? and what should we do next? Geophys. J. Int., 107, 387-407, 1991.
Crampin S. The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428-438, 1994.
Crampin S., T. Volti, S. Chastin, A. Gudmundsson, and R. Stef´ansson. Indication of high pore-fluid pressures in a seismically-active fault zone. Geophys. J. Int., 151, F1–F5, 2002.
Crampin, S., and S. Peacock. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion, 45. 675–722, 2008.
Chang, C.-H., Y.-M. Wu, T.-C. Shin, and C.-Y. Wang. Relocation of the 1999 Chi-Chi Earthquake in Taiwan. Terr. Atmos. Ocean. Sci., 11, 3, 581-590, 2000.
Durand, S., J. P. Montagner, P. Roux, F. Brenguier, R. M. Nadeau, and Y. Ricard. Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys. Res. Lett., Vol. 38, L13303, 2010.
Forghani, F., and R. Snieder. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry. The Leading Edge, 29,7, 790-794, 2010.
Froment, B., M. Campillo, P. Roux1, P. Gouédard, A. Verdel, and R. L. Weaver. Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophys., 75, 5, SA85-SA93, 2010.
Fukao, Y. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309, 695-698, 1984.
Hillers, G., M. Campillo, Y.-Y. Lin, K.-F. Ma, and P. Roux. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole. J. Geophys. Res., 117, B06301, 2012.
Hung, J.-H., K.-F. Ma, C.-Y. Wang, H. Ito, W. Lin, E.-C. Yeh. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophys., 466, 307-321, 2009.
Kaneshima, S. Upper bounds of seismic anisotropy in the Tonga slab near deep earthquake foci and in the lower mantle. Geophys. J. Int., 197, 351–368, 2014.
Kuo, B.-Y., C.-C. Chun, and T.-C. Shin. Split S waveforms observed in northern Taiwan: Implications for crustal anisotropy, Geophy. Res. Lett., 21, 1491-1494, 1994.
Landès, M., F. Hubans, N. M. Shapiro, A. Paul, and M. Campillo. Origin of deep ocean microseisms by using teleseismic body waves. J. Geophys. Res., 115, B05302, 2010.
Leary, P.C., Li, Y.-G., and Aki, K. Observation and modeling of fault-zone fracture seismic anisotropy-I. P, SV and SH travel times, Geophys. 1. R. astr. SOC., 91, 461-484, 1987.
Lee, S.-J., K.-F. Ma, and H.-W. Chen. Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res.111, B11308, 2006.
Lewis, M. A., and P. Gerstoft. Shear wave anisotropy from cross-correlation of seismic noise in the Parkfield pilot hole. Geophys. J. Int., 188,2,626-630, 2010.
Lecocq, T., C. Caudron, and F. Brenguier., MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise, Seismol. Res. Lett., 85, 3, 2014.
Lin, A. T.-S., S.-M. Wang, J.-H. Hung, M.-S. Wu, and C.-S. Liu. Lithostratigraphy of the Taiwan Chelungpu-Fault Drilling Project-A borehole and its neighboring region, Central Taiwan. Terr. Atmos. Ocean. Sci., 18, 2, 223-241, 2007.
Lin, Y.-Y., K.-F. Ma, and V. Oye. Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophys. J. Int., 190, 1, 665-676, 2012.
Lin, W., E.-C. Yeh, H. Ito, T. Hirono, W. Soh, C.-Y. Wang, K.-F. Ma, J.-H. Hung, and S.-R. Song. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three-dimensional in-situ stress determination. Terr. Atmos. Ocean. Sci. Vol. 18, 2, 379-393, 2007.
Liu, Y., S. Crampin, and I. Main. Shear-wave anisotropy: spatial and temporal variations in time delays at Parkfield, Central California. Geophys. J. Int., 130, 771-785, 1997.
Liu, Y.-F., T.-L Teng, and Y. Ben-Zion. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations. Bull. Seismol. Soc. Am., 94, 6, 2330-2347, 2004.
Ma, K.-F., Y.-Y. Lin, S.-J. Lee, J. Mori, and E. E. Brodsky. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan. Science, 337, 6093, 459-463, 2012.
Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh, W. Soh, H. Sone, L.-W. Kuo, and H.-Y. Wu. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444, 473-476, 2006.
Ma, K.-F., J. Mori, S.-J. Lee, and S.-B. Yu. Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am., 91, 1069–1087, 2001.
Ma, K.-F., C.-T. Lee, and Y.-B. Tsai. The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault. E.O.S., 80, 605, 1999.
McNamara D. E., and R. P. Buland Ambient noise levels in the continental United States. Bull Seismol Soc. Am., 94, 4, 1517-1527, 2004.
Miyazawa, M., R. Snieder, and A. Venkataraman. Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada. Geophys.Vol. 73, 4, D35-D40, 2008.
Nakata, N., and R. Snieder. Time-lapse change in anisotropy in Japan’s near surface after the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., Vol. 39, L11313, 2012.
Nagaoka, Y., K. Nishida, Y. Aoki, and M. Takeo. Temporal change of phase velocity beneath Mt. Asama, Japan, inferred from coda wave interferometry. Geophys. Res. Lett., Vol. 37, L22311, 2010.
Roux, P., Karim G. Sabra, Peter Gerstoft, and W. A. Kuperman. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett., Vol. 32, L19303, 2005.
Roux, P., K. G. Sabra, W. A. Kuperman, and A. Roux. Ambient noise cross correlation in free space: Theoretical approach. J. Acoust. Soc. Am., 117, 79-84, 2004.
Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler. Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys. Res. Lett., 32, L03310, 2005.
Saiga, A., Y. Hiramatsu, T. Ooida, and K. Yamaoka. Spatial variation in the crustal anisotropy and its temporal variation associated with a moderate-sized earthquake in the Tokai region, central Japan. Geophys. J. Int., 154, 695-705, 2003.
Shearer, M. P. Introduction to Seismology. Second Edition, Cambridge Univ. Press. New York., 2009.
Shih, X. R., R. P. Meyer, and J. F. Schneider. An automates, analytical method to determine shear-wave splitting. Tectonophys., 165, 271-278, 1989.
Silver, P. G., and W. W. Chan. Shear wave splitting and sub continental mantle deformation. Geophys. J. Res., 96, B10, 16429-16454, 1991.
Snieder, R. Extracting the Green’s function from the correlation of coda waves:A derivation based on stationary phase. Phys. Rev., E 69, 046610, 2004.
Stehly, L., M. Campillo, and N. M. Shapiro. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., Vol. 111, B10306, 2006.
Suppe, J. A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China, 23, 46-55, 1980a.
Suppe, John. Imbricated structure of western foothills belt, south-central Taiwan. Petro. Geol. Taiwan, 17, 1-16, 1980b.
Suppe, J. Mechanics of the mountain building and metamorphism in Taiwan. Geol. Soc. China Mem. 4, 67-89, 1981.
Tanaka, H., W. M. Chen, C. Y. Wang, K. F. Ma, N. Urata, J. Mori, and M. Ando. Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 33, L16316, 2006.
Trifunac, M. D., and A. G. Brady. A study of the duration of strong earthquake ground motion. Bull Seismol Soc Am, 65,3, 581–626, 1975.
Wang, C.-Y., C.-L. Li, and H.-C. Lee. Constructing subsurface structures of the Chelungpu fault to investigate mechanisms leading to abnormally large ruptures during the 1999 Chi-Chi earthquake, Taiwan. Geophys. Res. Lett. Vol. 31, 2, L02608, 2004.
Wang, C.-Y., C.-L. Li, and H.-Y. Yen. Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics. Geophys. Res. Lett. Vol. 29, 16,37-1, 2002a.
Wang, C.-Y., C.-L. Li, F.-C. Su, M.-T. Leu, M.-S. Wu, S.-H. Lai, and C.-C. Chern. Structural mapping of the 1999 Chi-Chi Earthquake fault, Taiwan by seismic reflection methods. Terr. Atoms. Ocean. Sci. Vol. 13, 3, 211-226, 2002b.
Wang, C.-Y., C.-H. Chang, H.-Y. Yen. An interpretation of the 1999 Chi-Chi Earthquake in Taiwan based on the Thin-skinned thrust model. Terr.Atoms.Ocean. Sci. Vol. 11,3, 609-630, 2000.
Weaver, R. L. Information from Seismic Noise. Science, 307, 5715, 1568-1569, 2005.
Wu, H.-Y., K.-F. Ma, M. Zoback, N. Boness, H. Ito, J.-H. Hung, S. Hickman. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophys. Res. Lett., 34, L01303, 2007.
Wu, Y.-M., Y.-J. Hsu, C.-H. Chang, L. S.-Y. Teng, and M. Nakamura. Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog. Earth and Planetary Sci. Lett., 298, 306–316, 2010.
Yu, S.-B., L.-C. Kuo, Y.-J. Hsu, H.-H. Su, C.-C. Liu, C.-S. Hou, J.-F. Lee, T.-C. Lai, C.-C. Liu, C.-L. Liu, T.-F. Tseng, C.-S. Tsai, and T.-C. Shin. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am.,91, 5, 995-1012, 2001.
Yeh, Y.-H., E. Barrier, C.-H. Lin, and J. Angelier. Stress tensor analysis in the Taiwan area from focal mechanisms of earthquake. Tectonophys., 200, 267–280, 2001.
Yue, L.-F., J. Suppe, and J.-H. Hung. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw7.6). J. of Structural Geology, 27.2058-2083, 2005.
Zhang, Z. and S. Y. Schwartz. Seismic anisotropy in the shallow crust of the Loma Preta segment of the San Andreas Fault system. J. Geophys. Res. Vol. 99, No. B5, 9651-9661, 1994.
林彥宇,TCDP井下地震儀 ─ 微地震之觀測與震源特性分析,國立中央大學地球科學學系博士論文,2014。
陳燕玲,藉由推求最小完整規模及分析其時空分布特徵以評估中央氣象局地震觀測網之觀測效能,中央氣象局研究發展專題,95年度研究報告第 CWB95-1A-13號,2006。
吳泓昱,車籠埔斷層於台中大坑井區之物理參數特性及應力場異質性模擬,國立中央大學地球科學學系博士論文,2010。