跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧宇翔
Yu-Hsiang Teng
論文名稱: 頭戴式顯示裝置之雙穩態環境光調光模組之設計
Design of Bistable Ambient Light Dimming Module for Head-Mounted Display
指導教授: 孫慶成
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 頭戴式顯示器調光模組擴增實境混合實境
外文關鍵詞: Head-mounted display, Dimming-module, Augmented reality, Mixed reality
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出四種用於頭戴式顯示裝置的環境光調光模組,藉由電控轉動100µm等級的微結構控制環境光進光量,其微結構單元為雙色小球,一半為吸光材料,另一半為透光材料。調光模組分成穿透態及遮蔽態,切換後不需消耗功率即可維持任一狀態。依據模擬結果,所設計之遮光元件之穿透態穿透率皆可大於50%,遮蔽態穿透率皆可小於10%,對比度可達到10。另外,我們將調光模組模型進行近眼成像的模擬,探討MTF與微結構的繞射效應,針對不同空間頻率對比度的影響歸納出MTF表現較好的型態。


    In this thesis, we have proposed four kinds of transmission-adjustable-dimming module for head-mounted see-through displays. The transmittance of ambient light is controlled by electronical-rotating microstructures with size around 100μm. The unit of microstructure is a bichromal bead which is with half opaque and half transparent. There are transparent state and dark state in the dimming modules. The dimming modules do not require power to maintain the state. According to the simulation results, transmittance of the transparent-state can be as high as 50%, the transmittance of the dark-state can be as low as 10%, and the contrast ratio reaches around 10. Finally, we make simulation to evaluate the performance of dimming modules in near-eye imaging system. Through MTF analysis, we can find the influence of the diffraction effect caused by microstructure, and then we can optimize the design.

    中文摘要 i ABSTARCT ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xv 第一章 緒論 1 1-1研究動機與問題描述 1 1-2 調光模組相關發展 4 1-3 論文大綱 6 第二章 基礎原理 7 2-1 比爾朗博定律 7 2-2光線追跡 8 2-3繞射點擴散函數 10 2-4光學傳遞函數 13 2-5調制傳遞函數 15 2-6 高斯光傳遞 15 2-7 阿貝數 16 第三章 調光模組之結構設計 18 3-1光合路器 18 3-2 以正片模擬調光模組結構大小之實驗 21 3-3 旋轉式調光模組之設計 28 3-3-1球狀緊密式排列調光模組 29 3-3-2球狀陣列式排列調光模組 32 3-3-3柱狀陣列式排列調光模組 34 3-4 旋轉式調光模組電極控制方法之設計 36 3-4-1 點陣列電極控制 36 3-4-2 側向式電極控制 41 3-5 機械式調光模組之設計 42 3-5-1 錯位式調光模組 42 第四章 調光模組之光學特性模擬分析 46 4-1簡易眼球模型 46 4-2調光模組之穿透率與對比度模擬 47 4-2-1雙層球狀緊密式排列調光模組之穿透率與對比度 48 4-2-2雙層球狀陣列式排列調光模組之穿透率與對比度 50 4-2-3柱狀陣列式排列調光模組穿透率與對比度 51 4-2-4機械錯位式調光模組穿透率與對比度 52 4-2-5吸收式液晶之穿透率與對比度討論 54 4-3 調光模組之成像品質 55 4-3-1 MTF模擬架構與分析方法 55 4-3-2雙層球狀緊密式排列調光模組之MTF 57 4-3-3雙層球狀陣列式排列調光模組之MTF 62 4-3-4柱狀陣列式排列調光模組之MTF 64 4-3-5錯位式調光模組之MTF 66 4-4 歸納分析 68 第五章 成果討論 70 5-1 結論 70 參考文獻 72 中英文名詞對照表 76

    1. D. W. F. van Krevelen, and R. Poelman, "A Survey of Augmented Reality Technologies, Applications and Limitations," International Journal of Virtual Reality 9, 1-20 (2010).
    2. S. Mann, "Humanistic Computing: WearComp as a New Framework and Applicationfor Intelligent Signal Processing," Proceedings of the IEEE 86, 2123-2151 (1998).
    3. Digi-capital, inc, "Ubiquitous $90 billion AR to dominate focused $15 billion VR by 2022," https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/.
    4. 孫慶成,光電工程概論,(全華圖書,西元2014年).
    5. M. I. Olsson, M. W. Martin, J. J. Hebenstreit, and P. M. Cazalet, "Wearable device with input and output structures," U.S. patent No. 9529197 (2016).
    6. J. D. Haddick, J. Bietry, and J. N. Border, "See-through computer display systems," U.S. patent No. 9,448,409 (2016).
    7. Microsoft, inc, "HoloLens hardware details," https://docs.microsoft.com/en-us/windows/mixed-reality/hololens-hardware-details.
    8. W. Steve, G. Mann, and M. Gribetz, "Extramissive spatial imaging digital eye glass apparatuses, methods and systems for virtual or augmediated vision, manipulation, creation, or interaction with objects, materials, or other entities," U.S. patent No. 9,720,505 (2017).
    9. Epson, inc, "Smart Glasses-moverio," https://www.epson.com.sg/moverio-augmented-reality.
    10. C. Bell, "Dimming module for augmented and virtual reality," U.S. patent No. 9,626,936 (2017).
    11. Osterhoutgroup, "Product sheet," http://www.osterhoutgroup.com/products-compare.
    12. R. Baetens, B. P. Jelle, and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review," Solar Energy Materials and Solar Cells 94, 87-105 (2010).
    13. Y. Wang, E. L. Runnerstrom, and D. J. Milliron1, "Switchable Materials for Smart Windows, "Annual Review of Chemical and Biomolecular Engineering 7, 283-304 (2016).
    14. J. J. Rack, "Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes," Coordination Chemistry Reviews 253, 78-85 (2009).
    15. G. Baillet, G. Giusti, and R. Guglielmetti, "Comparative photodegradation study between spiro(indoline—oxazine) and spiro(indoline—pyran) derivatives in solution," Photochemistry and Photobiology A Chemistry 70(2), 157-161 (1993).
    16. James W. Kronberg, "Optical temperature indicator using thermochromic semiconductors" U.S. Patent 5,499,597(1996).
    17. M. Bukleski and V. M. Petruševski, "Preparation and Properties of a Spectacular Thermochromic Solid". Journal of Chemical Education. 86,30(2009)
    18. G. Spruce and R. D. Pringle, "Polymer dispersed liquid crystal (PDLC) films," Electronics & Communication Engineering Journal 4, 91-100 (1992).
    19. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates," Applied Physics Letters 80, 1088-1090 (2002).
    20. P. S. Drzaic, "Polymer dispersed nematic liquid crystal for large area displays and light valves," Journal of Applied Physics 60, 2142-2148 (1986).
    21. N. A. M. Verhaegh, D. K. G. D. Boer, M. T. Johnson, and B. V. D. Heijden, "Suspended particle device," U.S. Patent 20090153651 (1996).
    22. S. Mori, H. Kaneko, Y. Mikami, and Y. Morishita ,"Suspended Particle Device, Light Control Device Using the Same, and Method for Driving the Same," U.S. Patent 20130033741(1996).
    23. C. H. Chu, H. W. Wu, J. L. Huang, and C. T. Chiu, "Electrochromic device with functions of rapid switching duty cycle and infrared suppression," in 2017 International Conference on Applied System Innovation (ICASI), 349-352 (2017).
    24. H. Moulki, D. H. Park, B.-K. Min, H. Kwon, S.-J. Hwang, J.-H. Choy, T. Toupance, G. Campet, and A. Rougier, "Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices," Electrochimica Acta 74, 46-52 (2012).
    25. J. H. Park, Y. C. Kim, I. J. Ko, G. W. Kim, and J. H. Kwon, "High Contrast Ratio Electrochromic Light Shutter Device for Optical See-through Type Head Mounted Display," Sid Symposium Digest of Technical Papers 48(1), 677-680(2017).
    26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
    27. V. N. Mahajan, Aberrations Theory Made Simple, 馬仕信, 陳志宏, 李宣皓, 羅翊戩, 林哲巨, 鄭智元, 蔡直佑, 孫慶成, 像差光學概論(五南, 2014).
    28. G. R. Bradski, B. Schowengerdt, and S. A. Miller, "Virtual and augmented reality systems and methods," U.S. patent No. 9,874,749 (2018).
    29. B. T. Schowengerdt, "Virtual and augmented reality systems and methods," U.S. patent No. 9,791,700 (2017).
    30. B. T. Schowengerdt, D. Lin, and P. S. Hilaire, " Multi-layer diffractive eyepiece," U.S. patent No. 20180052277 (2018).
    31. J.-Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, "See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens," Scientific Reports 7, 2753 (2017).
    32. B. Kress and M. Shin, "Diffractive and holographic optics as optical combiners in head mounted displays," Proceedings of the 2013 ACM conference (2013).
    33. G. Crawford, Flexible Flat Panel Displays (John Wiley & Sons, 2005).
    34. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, "Design and synthesis of Janus micro-and nanoparticles," Materials Chemistry 15, 3745-3760 (2005).
    35. N. O. Chopra, P. M. Kazmaier, K. A. Moffat, and P. J. Gerroir, "Encapsulated gyricon spheres," U.S. patent No. 6,445,490 (2002).
    36. C. Wright, "Gyricon media using amorphous silicon thin film transistor active matrix arrays and a refresh method for the same," U.S. patent No. 20050253802 (2005).
    37. J. M. Crowley, "Gyricon display with interstitially packed particles" U.S. patent No. 5,914,805 (1999).
    38. Iota Silicon Oil, inc, "Silicon oil datasheet," http://cht.iotachem.com/listproduct.
    php?id=17.
    39. N. Sultanova, S. Kasarova and I. Nikolov. "Dispersion properties of optical polymers," Acta Physica Polonica A 116, 585-587 (2009)
    40. Y. Brasse, M. B. Müller, M. Karg, C. Kuttner, T. A. F. König, and A. Fery. , "Magnetic and electric resonances in particle-to-film-coupled functional nanostructures," ACS Appl. Mater. Interfaces 10, 3133-3141 (2018)
    41. K. J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, and J. Lahann, "Spontaneous shape reconfigurations in multicompartmental microcylinders," Proceedings of the National Academy of Sciences 109, 16057 (2012).
    42. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, "High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering," Applied Physics Letters 89, 112123 (2006).
    43. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432, 488 (2004).
    44. KarlG, "Near Eye Displays (NEDs): Gaps In Pixel Sizes," https://www.kguttag.com/2017/06/07/ aps-in-pixel-sizes/.
    45. S. P. Hotelling and J. Z. Zhong, "Integrated in-plane switching display and touch sensor," U.S. patent No.8040326 (2011).
    46. Simon Baker, "Panel Technologies," http://www.tftcentral.co.uk//articles/panel_ technologies.htm.
    47. Ossila, inc, "ITO Glass Substrates Specifications," https://www.ossila.com/products/ito-glass-substrate.
    48. J. Bryzek, "Impact of MEMS technology on society," Sensors and Actuators A: Physical 56, 1-9 (1996).
    49. Filmetrics, inc, "Reflectance Calculator," https://www.filmetrics.com/reflectance-calculator.
    50. 江重致,人眼眼球模型建構與人因照明之研究,國立中央大學光電所博士論文,中華民國一零三年。
    51. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers with Modern Physics, Fifth Edition (Saunders College, 2000).
    52. J. R. Cameron and J. G. Skofornick, Roderick M. Grant, Physics of the Body, 2nd Edition (Madison, WI: Medical Physics, 1999).
    53. "The Eye: The Wonder of Accommodation." http://www.physicsclassroom.com/Class/refrn/U14L6c.html.
    54. 經濟部標準檢驗局, "CNS15067太陽眼鏡標準," https://www.bsmi.gov.tw/.
    55. H. Zang, J.-J. Hwang, H. Gu, J. Hou, X. Weng, Y. Chen, and R. C. Liang, "Threshold and grayscale stability of Microcup electronic paper," Proc.SPIE 5289, 5289 - 5289 (2004).
    56. F. De Nicola, C. Pintossi, F. Nanni, I. Cacciotti, M. Scarselli, G. Drera, S. Pagliara, L. Sangaletti, M. De Crescenzi, and P. Castrucci, "Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient," Carbon 95, 28-33 (2015).
    57. J. Nelson, The Physics of Solar Cells, (Imperial College Press, 2003).

    QR CODE
    :::