| 研究生: |
李宗勳 Tsung-Hsun Li |
|---|---|
| 論文名稱: |
一維奈米結構熱電量測元件之製作與應用 Fabrication of Microdevices for Investigating One-Dimensional Thermoelectric Properties |
| 指導教授: | 李勝偉 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 矽 、一維奈米結構 、熱電量測元件 、微影製程 |
| 外文關鍵詞: | silicon, one-dimensional nanostructures, thermoelectric device, lithography |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源是現今最重要的問題之一,為了有效地利用能源,已經有很多研究在尋求更好的熱電轉換應用的新材料。熱電是熱和電之間的轉換,“熱電材料”用於描述那些擅長將熱轉換成電能的材料,通過熱電材料的熱電轉換效率,將廢熱轉換為電能,可以改善溫室氣體排放的問題,因此,熱電轉換元件可以解決當今面臨能源短缺的這一大問題。近年來,低維度半導體材料被證明是相當有潛力的熱電材料,為了研究一維熱電材料性質,我們製作出懸浮的熱電感測元件以及利用無電鍍金屬輔助蝕刻合成出一般及重摻雜的矽單晶奈米線,奈米線以顯微操作的方式放置於元件上,量測之後發現,有大量孔隙的重摻雜矽奈米線比起輕摻雜奈米線具有較低的熱導與席貝克常數,導致較高的熱電優質。因此,我們嘗試以表面粗糙度和矽奈米線的孔隙率來解釋這些結果是因金屬輔助化學蝕刻過程所引起的。
Energy is one of the most important issues today. For efficient use of energy, there has been much research in the search for new materials for advanced thermoelectric energy conversion applications. Thermoelectricity is the conversion between heat and electricity. “Thermoelectric (TE) materials” is used to describe the materials that are good at converting heat to electricity. By converting waste heat into electricity through the thermoelectric power of thermoelectric materials without producing greenhouse gas emissions, thermoelectric generators can be an important part of the solution to today’s energy challenge. In recent years, low-dimensional materials of semiconductor have been proved to be potential as thermoelectric materials. In order to experimentally investigate the TE properties in one-dimensional materials in a systematic manner, it is necessary to measure the TE parameters of samples with precisely controlled dimensions. For this purpose, we batch-fabricated suspended micro-fabricated devices for measuring thermal and electrical transport in lightly- and heavily-doped Si nanowires (SiNWs) prepared using metal-assisted chemical etching. The resulting nanowire is placed on a micro-fabricated device by micro-manipulation. We found that the heavily-doped SiNW has lower thermal conductivity and Seebeck coefficient than lightly- doped SiNW, resulting in higher ZT values. We attempt to explain these results in terms of surface roughness and porosities of SiNW caused during the metal-assisted chemical etching.
[1] T. J. Seebeck, "Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz," Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[2] J. C. Peltier, "Nouvelles expériences sur la caloricité des courans électrique," Annales de Chimie et de Physique, 56, 371 (1834).
[3] G. Mahan, B. Sales, J. Sharp, "Thermoelectric Materials:New Approaches To An Old Problem," Physics today, 50, 42 (1997).
[4] A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
[5] H. J. Goldsmd, R. W. Dougl, "The use of semiconductors in thermoelectric refrigeration", British Journal Applied Physics, 5, 386 (1954).
[6] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H Lee, D. Wang, Z. Ren, J. –P. Fleurial, P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, 19, 1043-1053 (2007).
[7] D. T. Morelli, T. Caillat, J. -P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, "Low-temperature transport properties of p-type CoSb3," Physical Review B, 51, 9622 (1995).
[8] G. S. Nolas, D. T. Morelli, T. M. Tritt, "SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications," Annual Review Mater, 29, 89 (1999).
[9] T. Caillat, A. Borshchevsky, J.-P. Fleurial, "Properties of single crystalline semiconducting CoSb3," Journal Applied Physics, 80, 4442 (1996).
[10] L. D. Hicks, M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, 47, 16631 (1993).
[11] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 53, 10493 (1996).
[12] L. D. Hicks, M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 47, 12727 (1993).
[13] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, "Experimental proof-of-principle investigation of enhanced ZT in (001) oriented Si/Ge superlattices," Applied Physics Letters, 76, 3944 (2000).
[14] G. Chen, "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices," Physical Review B, 57, 14958 (1998).
[15] Y. –M. Lin, M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, 68, 75304 (2003).
[16] C. Dames, G. Chen, "Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires," Journal Applied Physics, 95, 682 (2004).
[17] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, 451, 168 (2008).
[18] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, "Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach," Advanced Functional Materials, 20, 357 (2010).
[19] D. M. Rowe, "Thermoelectrics handbook micro to nano," (2006).
[20] E.Altenkirch, "Physikalische Zeitschrift," 12, 920–924 (1911).
[21] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, S. T. Lee, "Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation," Chemical Physics Letters, 337, 18-24 (2001).
[22] N. Wang, Y. Cai, R. Q. Zhang, "Growth of nanowires," Materials Science and Engineering: R: Reports, 60, 1-51 (2008).
[23] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee, "Silicon Nanowires Prepared by Laser Ablation at High Temperature," Applied Physics Letters, 72, 1835-1837 (1998).
[24] T. Hanrath, B. A. Korgel, "Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals," Advanced Materials, 15, 437-440 (2003).
[25] T. Hanrath, B. A. Korgel, "Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals," Journal of the American Chemical Society, 124, 1424-1429 (2002).
[26] K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, "Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry," Advanced Materials, 14, 1164-1167 (2002).
[27] K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, "Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition," Advanced Functional Materials, 13, 127-132 (2003).
[28] Wendong Zhang, Xuge Fan, Shengbo Sang, Pengwei Li, Gang Li, Yongjiao Sun, Jie Hu, "Fabrication and characterization of silicon nanostructures based on metal-assisted chemical etching," Korean Journal of Chemical Engineering, 31, 62-67 (2014).
[29] J. Chen, Z. Yan, L. Wu, "The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator," Journal of applied physics, 79, 8823-8828 (1996).
[30] Li Shi, Deyu Li, Choongho Yu, Wanyoung Jang, Dohyung Kim, Zhen Yao, Philip Kim, Arunava Majumdar, "Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device," Journal of Heat Transfer, 125, 881-888 (2003).
[31] K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, "Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport," Nano letters, 10, 4341-4348 (2010).
[32] M. C. Wingert, Z. C. Chen, E. Dechaumphai, J. Moon, J. H. Kim, J. Xiang, R. Chen, "Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime," Nano letters, 11, 5507-5513 (2011).
[33] J. K. Yu, S. Mitrovic, D. Tham, J. Varghese, J. R. Heath, " Roughening of single-crystal silicon surface etched by KOH water solution," Sensors and Actuators A: Physical, 73, 122–130 (1999).
[34] Mitsuhiro Shikida, Kazuo Sato, Kenji Tokoro, Daisuke Uchikawa, "Comparison of Anisotropic Etching Properties between KOH and TMAH Solutions," IEEE, 315 - 320 (1999).
[35] T. Baum, D. J Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si in KOH for micromachining applications," Journal of Micromechanics and Microengineering, 7, 338 (1997).
[36] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, 451, 163-167 (2008).
[37] A. I. Hochbaum, Daniel Gargas, Yun Jeong Hwang, Peidong Yang, "Single Crystalline Mesoporous Silicon Nanowires," Nano letters, 9, 3550-3554 (2009).
[38] Y. S. Ju, K. E. Goodson, "Phonon scattering in silicon films with thickness of order 100 nm," Applied Physics Letters, 74, 3005–3007 (1999).
[39] M. Holland, "Analysis of lattice thermal conductivity," Physical Review, 132, 2461 (1963).
[40] C. Kittel, "Introduction to Solid State Physics, " Wiley, 8th edn, (2004).
[41] G. Kumar, G. Prasad, R. Pohl, "Experimental determinations of the Lorenz number," Journal of Materials Science, 28, 4261-4272 (1993).
[42] Cheng-Yu Tsai, Shih-Ying Yu, Cheng-Lun Hsin, Chun-Wei Huang, Chun-Wen Wang, Wen-Wei Wu, "Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures," RSC, 14, 53-58 (2012).
[43] Joo-Hyoung Lee, Giulia A. Galli, Jeffrey C. Grossman, "Nanoporous Si as an Efficient Thermoelectric Material," Nano Letters, 8, 3750-3754 (2008).