跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李孟鴻
Meng Hong Lee
論文名稱: 汰役鋰電池循環經濟之研究
A study on the circular economy model of retired Li-ion battery
指導教授: 張東生
Dong-Shang Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 汰役鋰電池鋰電池再利用鋰電池回收循環經濟
外文關鍵詞: Retired Li-ion battery, Li-ion battery reusing, Li-ion battery recycling, Circular economy (CE)
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產品及電動車的蓬勃發展,鋰電池已成為日常生活中不可或缺之能源來源,根據統計,至2016年全球單年的鋰電池需求已超過94GWh,預計至2025年將成長至200GWh的水準,屆時每年鋰電池原料的總需求量將超過300,000噸。然而,鋰電池在經年累月的充放電循環後,其電容量及電性會逐漸消失或衰減,成為低容量或不可使用之汰役電池,若沒有進行妥善處理,則會對環境、生態及資源開發帶來污染及浪費。
    針對此議題,本文旨在探討延續鋰電池壽命、降低電池的使用成本及回收汰役電池的最佳處理方針,本研究透過資料包絡分析法(DEA)及實驗法,提出一種新的汰役電池二階段回收再利用的循環經濟模式。第一階段主要利用資料包絡分析中分配模式(Allocation model)探討動力電池轉為儲能用電池的最佳轉換點,以延續電池壽命;第二階段透過實驗法將無法再使用的汰役電池以物理及化學的方式進行回收,獲得再生高純度碳酸鋰原料,以達到減緩鋰資源開採速度、環境保護及降低生產成本。
    本研究發現,第一階段汰役鋰電池動力應用轉儲能應用的循環次數比例達1:1時,是能源效率最佳轉換點,並為動力電池提供最有效率的使用方式,同時延續電池壽命及使用成本。第二階段的實驗,可回收獲得高純度碳酸鋰、磷酸亞鐵等再生原料。透過實驗,本研究所提出的回收方式將可從每1Ah的汰役電池萃取出1g的高純度碳酸鋰。根據價格趨勢,預計2020年全球可回收12,272噸的再生碳酸鋰,總產值高達1.03億美元。此舉將進一步提升鋰電池的環保功能,並達到鋰電池循環經濟的效用。


    With the rapid development of electronic products and electric vehicles, Li-ion batteries have become an energy resource in daily life. According to statistics, by 2016, the global demand for Li-ion batteries has surpassed 94GWh per year and will grow to 200GWh in 2025. And the annual demand for lithium battery raw materials will be more than 300,000 tons. However, the battery after years of charge and discharge cycles, its capacity and electrical properties will gradually disappear or reducing. If not properly handled as a low-capacity and inactivity battery, it will bring environment pollution, ecology pollution and resources exhausted.
    In this study , we propose a new method of the two- phase circular economy model through the data envelopment analysis (DEA) and the experimental method which include reusing and recycling stage. The first stage we mainly use data envelopment analysis allocation model to calculate the best shift point of Li-ion battery from automotive stage to storage stage and extend the battery life. The second stage through the experimental method let retired-battery recycle by the physical and chemical method, to obtain high purity lithium carbonate raw materials. To reduce the consumption of lithium source, environmental protection and reduce production costs.
    The study found that the first stage of retired lithium battery shift from automotive applications to storage applications by 1: 1 cycle ratio is the best energy shift point, and provided the most efficient using method of the battery. The second stage could access high purity lithium carbonate, ferrous phosphate, and other renewable raw materials. We extract 1gram high purity Li2Co3 from per 1Ah retired battery. According to the price trend, it’s predicted to recycling 12,272 tons of lithium carbonate in 2020, and the output value will reach 103M USD per year around the world. This will be enhanced the environmental protection of Li-ion batteries, and achieve the effectiveness of circular economy (CE).

    摘要 ………………………………………………………………………………...i ABSTRACT ...................................................................................................................ii 誌謝辭 ……………………………………………………………………………....iii Table of Contents .......................................................................................................... iv List of figures ................................................................................................................. v List of tables .................................................................................................................. vi Chapter 1 Introduction ................................................................................................... 1 Chapter 2 Literature Review .......................................................................................... 5 2.1 Li-ion Battery and its applications ................................................................... 5 2.2 The shortage of lithium resource ..................................................................... 9 2.3 Li-ion battery reusing ..................................................................................... 11 2.4 Li-ion battery recycling .................................................................................. 13 2.5 Circular Economy (CE) ................................................................................. 15 Chapter 3 Research Method ......................................................................................... 18 3.1 Data Envelopment Analysis (DEA) ............................................................... 19 3.2 Allocation model of DEA .............................................................................. 21 3.3 Retired battery recycling processes: Physical processes ............................... 23 3.4 Retired battery recycling processes: Chemical processes .............................. 24 Chapter 4 Research Results ......................................................................................... 27 4.1 The data collection of experiment .................................................................. 27 4.2 The Results of Reusing Stage: from automotive mode to storage mode ....... 36 4.3 The Results of Recycling stage: recycle Li2CO3 from retired battery ........... 42 Chapter 5 Conclusion ................................................................................................... 46 5.1 The economic effect of battery reusing ......................................................... 46 5.2 The economic effect of recycled Li2CO3 ....................................................... 47 5.3 Circular economy of Li-ion battery ............................................................... 50 5.4 Limitations of research .................................................................................. 52 5.5 Future research ............................................................................................... 53 Reference ..................................................................................................................... 54

    Ahmadi L., Yip A., Fowler M., Young S. B. and Fraser R. A. (2014). Environmental feasibility of re-use of electric vehicle batteries. Sustainable Energy Technologies and Assessments, 6, 64-74.

    Atacama S. P. (2016, Jan 16). Clean energy: An increasingly precious metal. Retrieved May 3, 2016, from http://www.economist.com/news/business/21688386-amid-surge-demand-rechargeable-batteries-companies-are-scrambling-supplies

    B3 corporation (2013, November). Movements in price for capacity values used in the long-term forecast.

    Banker R.D., Charnes A. and Cooper W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.

    Barnard T. W., Crockett M. I., Ivaldi J. C., Lundberg P. L., Yates D. A., Levine P. A., and Sauer D. J. (1993). Solid-state detector for ICP-OES. Analytical Chemistry, 65 (9), 1231-1239.

    Berecibar M., Gandiaga I., Villarreal I., Omar N., Mierlo J.Van and Bossche P.Vanden (2016). Critical review of state of health estimation methods of Li-ion batteries for real applications. Renewable and Sustainable Energy Reviews, 56, 572-587.

    Bhat, R., Verma B. B. and Reuben E. (2001). Methodology note: Data Envelopment Analysis (DEA), Journal of Health Management ,3(2) , 309-328.

    Boix M., Montastruc L., Azzaro-Pantel C. and Domenech S. (2017). Optimization methods applied to the design of eco-industrial parks: a literature review. Journal of Cleaner Production, 87, 303-317.

    Catherine Heymans, Sean B. Walker, Steven B. Young, and Michael Fowler (2014). Economic analysis of second uses electric vehicle batteries for residential energy storage and load leveling. Energy Policy, 71, 22-30.

    Chang Y.C.and Sohn H.J. (2000). Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons. Journal of the Electrochemical Society, 147, 50–58.

    Changsun Ahn, Chiao-Ting Li and Huei Peng (2011). Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid. Journal of power sources, 196, 10369-10379.

    Charnes A., Cooper W.W. and Rhodes E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.

    Coleman M., Hurley W. G., and Lee C. K. (2008). An Improved Battery Characterization Method Using a Two-Pulse Load Test. IEEE Transactions on Energy Conversion, 23 (2), 708-713.

    Cook W. D., Seiford L. M. (2009). Data envelopment analysis (DEA) – Thirty tears on. European Journal of Operational Research, 192, 1-17.

    Dell R.M and Rand D.A. (2001). Energy storage — a key technology for global energy sustainability. Journal of Power Sources, 100, 2–17.

    Diouf B. and Pode R. (2015). Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76, 375-380.

    Geissdoerfer, M., Savaget, P., Bocken, N., & Hultink, E. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768.

    Georgi-Maschler T., Friedrich B., Weyhe R., Heegn H. and Rutz M. (2012). Development of a recycling process for Li-ion batteries. Journal of Power Sources, 207, 173-182.

    Hall P. J. and Bain E. J. (2008). Energy-storage technologies and electricity generation. Energy Policy, 36, 4352-4355

    Hammond G. P. and Hazeldine T. (2015). Indicative energy technology assessment of advanced rechargeable batteries. Applied Energy, 138, 559-571.

    Holzapfel M., Martinent A., Alloin B., Le Gorrec B., Yazami R. and Montella C. (2003). First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 546, 41–50.

    IEA (2013). Global EV outlook, understanding the electric vehicle landscape to 2020 .

    Junjie Hu, Hugo Morais, Tiago Sousa and Morten Lind (2016). Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renewable and Sustainable Energy Reviews, 56, 1207-1226.

    Kallis, G. (2011). In defence of degrowth. Ecological Economics, 70, 873-880.

    Kang Miao Tan, Vigna K.Ramachandaramurthy and Jia Ying Yong (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732.
    Kim Y.O.and Park S.M. (2001). Intercalation Mechanism of Lithium Ions into Graphite Layers Studied by Nuclear Magnetic Resonance and Impedance Experiments. Journal of the Electrochemical Society, 148, 194–199.

    Lee Jihyun, Pedersen Anders Branth and Thomsen Marianne (2014). The influence of resource strategies on childhood phthalate exposure—The role of reach in a zero waste society. Environment International, 73, 312-322.

    Lee M.L., Li Y.H., Liao S.C., Chen J.M., Yeh J.W. and Shih H.C. (2012). Li4Ti5O12-coated graphite as an anode material for lithium-ion batteries. Applied Surface Science, 258, 5938–5942.

    Li J., Xiu X. Q., Liu D. T. and Hui D. (2015). Research on Second Use of Retired Electric Vehicle Battery Energy Storage System Considering Policy Incentive. High Voltage Engineering, 41(8), 2562-2568.

    Li-Po He, Shu-Ying Sun, Xing-Fu Song, Jian-Guo Yu (2015). Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management, 46, 523-528.

    Liu X. H., Saito T., Doi T., Okada S. and Yamaki J. I. (2009). Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode. Journal of Power Sources, 189, 706–710.

    Lu Y., Haisen Y., Guoxi X. and Yong F. (2016). Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D,L-malic acid. RSC Advances, 6, 17947-17954.

    Lu, H. L. (2016, Dec. 21). Development Status and Future Prospect of Lithium Battery Material Industry in 2016. Retrieved Feb. 26, 2017 from http://ieknet.iek.org.tw/iekppt/ppt_more.aspx?sld_preid=4886

    Neubauer, J.S. and Pesaran, A. (2011). The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. Journal of Power Sources, 196, 10351-10358

    Neubauer, J.S., Pesaran, A., Williams, B., Ferry, M., Eyer, J. (2012). A Techno-economic Analysis of PEV Battery Second use: Repurposed-battery Selling Price and Commercial and Industrial End-user Value. Presented at the SAE World Congress 2012 (April), 24–26 (Detroit, MI).

    Ordoñez J., Gago E.J. and Girard A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205.

    Patel, P. and Gaines, L. (2016). Recycling Li batteries could soon make economic sense. MRS Bulletin, 41(6), 430–431.

    Piao T., Park S.M., Doh C.H. and Moon S.I. (1999). Intercalation of Lithium Ions into Graphite Electrodes Studied by AC Impedance Measurements. Journal of the Electrochemical Society, 146, 2794–2798.

    Poullikkas A. (2013). A comparative overview of large-scale battery systems for electricity storage. Renewable and Sustainable Energy Reviews, 27, 778-788.

    Romo R.and Micheloud O. (2015). Power quality of actual grids with plug-in electric vehicles in presence of renewables and micro-grids. Renewable and Sustainable Energy Reviews, 46, 189-200.

    Rozier P. and Tarascon J. M. (2015). Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of the Electrochemical, 162(14), A2490-A2499.

    Smith S. (2016, April 6). Global and China Lithium Carbonate Industry Report, 2016-2020. Retrieved May 1, 2016, from http://www.prnewswire.com/news-releases/global-and-china-lithium-carbonate-industry-report-2016-2020-300247531.html

    Statista (2016a). Projection of total worldwide lithium demand from 2015 to 2025 (in metric tons of lithium carbonate equivalent). Retrieved Feb. 26, 2017 from https://www.statista.com/statistics/452025/projected-total-demand-for-lithium-globally/

    Statista (2016b). Forecast of annual price averages for lithium chemicals worldwide from 2015 to 2025 (in U.S. dollars per kilogram). Retrieved Feb. 26, 2017 from https://www.statista.com/statistics/452028/average-annual-price-projection-for-lithium-chemicals-globally/

    Stewart S.G., Srinivasan V. and Newman J. (2008). Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation. Journal of the Electrochemical, 155, A664–A671.

    Sun Liang, Qiu Keqiang (2012). Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management, 32, 1575-1582.

    Tone K. (2002). A Strange Case of the Cost and Allocative Efficiencies in DEA. The Journal of the Operational Research Society, 53(11), 1225-1231.

    Umicore (2017). An internationally recognized process. Retrieved Feb. 27, 2017 from http://pmr.umicore.com/en/batteries/our-recycling-process/

    Wang C.S., Appleby A.J. and Little F.E. (2001). Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta, 46, 1793–1813.
    Wanger, T. C. (2011). The Lithium future—resources, recycling, and the environment. Conservation Letters, 4, 202–206.

    Whittingham M.S. (2004). Lithium batteries and cathode materials. Chemical Review, 104, 4271–4301.

    Winans K., Kendall A.and Deng H. (2017). The history and current applications of the circular economy concept. Renewable and Sustainable Energy Reviews, 68(1), 825-833.

    Xu, Yano, Sakai and Mater (2016). journal of Cycles Waste Management, 18, 469.

    Zeng X., Li J. and Liu L. (2015). Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 52, 1759-1767.

    Zeng X., Li J. and Singh N. (2014). Recycling of Spent Lithium-Ion Battery: A Critical Review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165.

    Zeng, X. and Li, J. (2014). Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 271, 50-56.

    Zeng, X., Li, J., and Ren, Y. (2012). Prediction of various discarded lithium batteries in China. Proceedings of the IEEE, 2012, 1-4.

    Zhang a S. and Shi P. (2004). Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte. Electrochim Acta, 49, 1475–1482.

    QR CODE
    :::