| 研究生: |
尹相勗 Xiang-Xu Yin |
|---|---|
| 論文名稱: |
近牆效應對水中墜落圓球影響之研究 Near Wall Effect on the Falling Sphere in Water |
| 指導教授: | 朱佳仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 邊牆效應 、墜落圓球 、大渦模式 、RNG k–ε 、沉浸邊界法 |
| 外文關鍵詞: | Sidewall effect, RNG k–ε model |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多流場問題中可能發生懸浮顆粒與邊牆之間的互制現象,譬如懸浮顆粒在管道中流動、人體血管內血球的運動以及河流中的泥沙傳輸等。本研究藉由實驗觀察不同密度圓球體在水箱內不同邊牆間距下的自由墜落現象,發現當壓克力球與邊牆的初始間距小於圓球體直徑D,圓球體的墜落軌跡會偏離鉛垂直線,先微幅地靠近側牆,在不碰撞邊牆下,又逐漸地偏離側牆,圓球墜落軌跡呈現S曲線。但鐵球在相同的邊牆間距下,墜落軌跡十分接近鉛垂直線。由圓球直徑和終端速度計算而得之雷諾數為1.8 x 10^4~ 1.4 x 10^5。本研究並利用RNG k–ε模式計算墜落球體周圍的流速和壓力,再採用沉浸邊界法計算墜落圓球的軌跡,並和實驗的結果比對。模擬的結果顯示:壓克力圓球靠近邊牆時,圓球左右兩側壓力不對稱,使得球體往側牆靠近,引發球體兩側的渦流逸散,使得圓球體往相反方向墜落。但鐵球的慣性大,墜落速度大,側向力無法使其偏離鉛垂線。為了深入探討邊牆效應給圓球的影響,我們藉由風洞實驗量測固定圓球在不同邊牆間距下,圓球表面的壓力,並利用大渦模式計算固定圓球周遭的流場和壓力分佈與實驗結果互相比對。本研究藉由模擬結果來定義一個無因次參數來量化側向力與重力之比,建立圓球側向力與邊牆間距之關係,以界定圓球體的墜落軌跡是否受側牆之影響。
This study utilizes laboratory experiments and a fluid/solid coupled numerical model to investigate the near wall effect on a free-falling sphere in water. The falling trajectory of the acrylic sphere resemble a S-curve when the initial distance between the sphere and the vertical sidewall is smaller than the sphere diameter D. The sphere first moves slightly towards the sidewall without colliding with it, then gradually moves away from the sidewall. The falling trajectory of steel sphere close to a straight line. The Reynolds number can be expressed in terms of the sphere's diameter and its terminal velocity, is in the range of Re = 1.8 x 10^4 ~ 1.4 x 10^5. In addition, an RNG k–ε model and the immersed boundary method are employed to simulate the flow field and pressure around the falling sphere. The Newton–Euler method is utilized to calculate the motion of the sphere. The simulated trajectories compared well with the experimental results. The simulation outcomes illustrate that the asymmetric pressure distribution on the left and right sides of the sphere propels the sphere towards the sidewall, and triggers vortex shedding around the sphere. Furthermore, the surface pressures of a fixed sphere are measured in a wind tunnel experiment to validate the near wall effect on the sphere. The simulation results of a Large eddy simulation also confirm that the near wall effect occurs when the gap is smaller than the sphere diameter. This study introduces a dimensionless force ratio to quantify the influence of the lateral force on the sphere’s trajectory.
[1] Achenbach, E., “Experiments on the flow past spheres at very high Reynolds numbers,” J. Fluid Mech. Vol.54 (3), 565-575 (1972).
[2] Aoki, K., Muto K, Okanaga, H. and Nakayama Y., “Aerodynamic characteristic and flow pattern on dimples structure of a sphere,” 10th International Conference on Fluid Control, Measurement, and Visualization, FlUCOME, Moscow, Russia. (2009).
[3] Blevins, R. D., Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., New York, U.S.A. (1984).
[4] Clift R., Grace J. and Weber M., Bubbles, Drops and Particles, Dover Publications (1978).
[5] Chen, S. D., Pan, T. W., and Chang, C. C. The motion of single and multiple neutrally buoyant elliptical cylinders in plane Poiseuille flow, Physics of Fluids, Vol.24, 103302 (2012).
[6] Chiu, C-L, Fan, C.-M, and Chu, C.-R. Numerical analysis of two spheres falling side by side, Physics of Fluids, Vol.34, 072112 (2022).
[7] Chu, C.-R., Chung, C.-H., Wu, T.-R., and Wang, C.-Y., Numerical analysis of free surface flow over a submerged rectangular bridge deck, J. of Hydraulic Eng. ASCE. 142(12) (2016).
[8] Chu, C.-R., Lin, Y.-A., Wu, T.-R., and Wang, C.-Y., Hydrodynamic force of circular cylinder close to the water surface, Computers and Fluids 171, 154-165 (2018).
[9] Chu, C.-R., Wu, Y.-R., Wang, C.-Y., and Wu, T.-R., Slosh-induced hydrodynamic force in a water tank with multiple baffles,” Ocean Eng. 167, 282-292 (2018).
[10] Chu, C.-R., Wu, T.-R., Tu, Y.-F., Hu, S.-K., and Chiu, C.-L., Interaction of two free- falling spheres in water,” Physics of Fluids Vol.32 (3), 033304 (2020).
[11] Chu, C.-R., Huynh, L.E. and Wu, T.-R., “Large eddy simulation of the wave loads on submerged rectangular decks,” Applied Ocean Research Vol.120, 103051 (2022).
[12] Cundall, P. A., Formulation of three-dimensional distinct element model-Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Intern. J. of Rock Mechanics and Mining Science & Geomechanics Abstracts 25: 107-116 (1988).
[13] Deardorff, J. W., A numerical study of three dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41, 453-480. (1970).
[14] DeLong, M., (1997) Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES, Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A.
[15] Elghobshi, S., On predicting particle-laden turbulent flows, Applied Scientific Research, Vol.52(4), 309-329 (1994).
[16] Grace, J. R., Leckner, B., Zhu, J., and Chang, Y., Fluidized Beds, Multiphase Flow Handbook, C. T. Crowe, ed., CRC Press, Boca Raton, U.S.A. (2006)
[17] Hirt, C. W. and Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. Vol.39(1), 201-225 (1981).
[18] Horowitz, M., and Williamson C.H.K. The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651: 251-294 (2010).
[19] Jung, J. Hassanein, A. Three-phase CFD analytical modeling of blood flow, Medical Engineering & Physics, 30(1), 91-103 (2008).
[20] Kim, H.J. and Durbin, P. A. Observations of the frequencies in a sphere wake and drag increase by acoustic excitation. Phyiscs of Fluids Vol.31 (11), 3260-3265. (1998)
[21] Lam, K., Allen, D. and Tippetts, T. Engineering verification and validation assessment of Truchas for induction heating, Los Alamos National Laboratory publication, 2007, LA-UR-07-7131. New Mexico, U.S.A. (2007)
[22] Lee, H.-Y., Chen, Y.-H., You, J., and Lin, Y.-T., Investigations of continuous bed load saltating process, J. Hydraulic Eng. Vol.126(9): 691-700 (2000).
[23] Maxworthy, T., “Experiments on the flow around a sphere at high Reynolds numbers,” J. Appl. Mech., Trans. ASME. 36, 598–607 (1969).
[24] Michaelides, E., (2013) Heat and Mass Transfer in Particulate Suspensions, Springer, Berlin, Germany.
[25] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., & von Loebbecke, A. (2008). A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. of Computational Physics, 227(10), 4825-4852.
[26] Mittal, R. and Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech. 37, 239-261 (2005).
[27] Mongruel, A, Lamriben, C, Yahiaoui, S, and Feuillebois F. (2010) The approach of a sphere to a wall at finite Reynolds number. J. Fluid Mech. Vol.661: 229-238.
[28] O’Neil, J. and Meneveau, C., (1997) Subgrid-scale stresses and their modelling in a turbulent plane wake, J. Fluid Mech. Vol.349, 253-293.
[29] Pope, S. B., (2000) Turbulent Flows, Cambridge University Press. Cambridge, U.K.
[30] Prahl, L., Holzer A., D. Arlov, J. Revstedt, M. Sommerfeld, L. Fuchhs, “On the interaction between two fixed spherical particles,” Intern. J. of Multiphase Flow Vol.33, 707-725 (2007).
[31] Rodriguez, I., Borell, R., Lehmkuhl, O., Peres-Segarra, C.D., and Oliva, A., Direct numerical simulation of the flow over sphere at Re = 3700, J. Fluid Mech. Vol.679, 263-287 (2011).
[32] Smagorinsky, J., (1963) General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Review, 91, 99-164.
[33] Stokes, G.G., (1851) On the effect of internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society. 9, Part II: 8-106.
[34] Tsai, L.-H., Chnag, C.-C., Pan, T.-W. and Glowinski, R., (2018) Numerical study of the wall effect on particle sedimentation, International Journal of Computational Fluid Dynamics, Vol.32 (2-3), 158-166. doi.org/10.1080/10618562.2018.1492115.
[35] Ten Cate A., Nieuwstad C.H., Derksen J.J., van den Akker H.E.A., Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere setting under gravity, Phys. Fluids Vol.14(11), 4012-4025 (2002).
[36] Tsuji, M., Morikawa, Y. and Terashima, K., “Fluid-dynamic interaction between two spheres,” Intern. J. of Multiphase Flow Vol.8 (1), 71-82 (1982).
[37] Wu, T.-R., Chu, C.-R., Huang, C.-J., Wang, C.-Y., Chien, S.-Y., and Chen, M.-Z., “A two-way coupled simulation of moving solids in free-surface flows,” Computers and Fluids Vol.100, 347-355 (2014).
[38] Weijermars, R. “Progressive fluid deformation in low Reynolds number flow past a falling cylinder,” Amer. J. Phys. Vol.56 (6), 534-540 (1988).
[39] Young, D.L., Li, J.-S., Capart, H. and Chu, C.-R.* Velocity measurements of vortex structures induced by sphere/wall interaction, Experiments in Fluids Vol.63, 170 (2022).
[40] Young, D.L., Lin, Y.C., Capart, H. and Chu, C.-R.* Vortex structures around two colliding spheres at high Reynolds number. Intern. J. of Multiphase Flow, Vol.157, 104246 (2022).
[41] Yun, G., Kim, D., Choi, H., Vortical structures behind a sphere at subcritical Reynolds numbers, Physics of Fluids Vol.18 (1), doi:10.1063/1.2166454 (2006).