跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張加賢
Chia-Hsien Chang
論文名稱: 壁面粗糙因子對間接加熱式旋轉鼓內顆粒熱傳行為影響之研究
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 粒子流旋轉鼓熱傳行為粗糙因子面積比
外文關鍵詞: granular flow, rotating drum, heat transfer, roughness factor, area ratio
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗的方式探討間接加熱式旋轉鼓於不同的旋轉速度與壁面粗糙因子下,顆粒體與覆蓋壁面間的熱傳遞係數。鋁製旋轉鼓內徑為100 mm,厚度為10 mm,實驗顆粒為2 mm的玻璃珠,在壁面上不黏貼顆粒與黏貼1 mm、2 mm、2.5 mm、3 mm、5 mm的玻璃珠以提供粗糙因子0、0.5、1、1.25、1.5、2.5的實驗組數,旋轉速度為3、6、9、12 rpm皆在滾動流態下操作,加熱方式為以電熱加熱器環狀包覆旋轉鼓等熱通量加熱顆粒體,初始溫度為25 ,最終溫度為60 ,加熱過程中使用熱像儀進行旋轉鼓內顆粒體溫度場的拍攝,擷取溫度值後計算熱傳遞係數。運動行為分析上使用高速攝影機拍攝流場後以PIV進行速度場的計算,並以流動層面積比表示顆粒的混合能力。由研究結果指出,粗糙因子越高將降低接觸熱阻使熱傳遞係數越大,除了轉速的提升會增強粒子流的對流外,粗糙的壁面也會增強顆粒的混合能力提升熱傳遞係數。光滑的壁面與粗糙的壁面的熱傳遞係數與面積比呈現兩條線性的關係,初始的間距為接觸熱阻所造成。


    The heat transfer coefficient between side wall and granular material in indirect heated rotating drum under different rotational speed and wall roughness was experimentally investigated in this study. The drum made by aluminum with inner diameter of 100 mm, thickness of 10 mm. Test particles are 2 mm glass beads. Smooth side wall and 1 mm, 2 mm, 2.5 mm, 3 mm, 5 mm glass beads be glued on side wall to provide six roughness factor: 0, 0.5, 1, 1.25, 1.5, 2.5. The drum be operated under rolling regime for rotational speed 3, 6, 9, 12 rpm. Drum be heated by electric heater apply constant heat flux from initial temperature 25 to final temperature is 60 . Obtain the temperature field by IR camera to calculate heat transfer coefficient. Analysis granular motion behavior by PIV to calculated velocity field. The area ratio is used to express the mixing ability of the particles. According to the results we find higher roughness factor will cause higher the heat transfer coefficient because thermal contact resistance decrease. Higher rotational speed will enhance granular convection and heat transfer coefficient. The heat transfer coefficient and area ratio of smooth wall and rough wall are expressed as two linear functions. The initial spacing is caused by the contact resistance.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 附圖目錄 vi 附表目錄 ix 符號說明 x 第一章 簡介 1 1-1 顆粒體與粒子流 1 1-2 顆粒於旋轉鼓中的運動行為 2 1-2-1 顆粒於旋轉鼓中的應用與現象 2 1-2-2 顆粒於旋轉鼓中的流動型態 3 1-2-3 滾動流態下的流動層與被動層 6 1-3 顆粒熱傳機制 6 1-4 顆粒於旋轉鼓內的熱傳行為 9 1-5 壁面摩擦效應 12 1-6 研究動機與架構 14 第二章 實驗設備與分析方法 15 2-1 實驗設備 15 2-2 實驗原理與分析方法 19 2-2-1 實驗參數 19 2-2-2 顆粒於旋轉鼓內熱傳行為分析 20 2-2-3 顆粒於旋轉鼓內運動行為分析 22 2-3 實驗步驟 24 2-3-1 溫度擷取系統實驗步驟 24 2-3-2 影像拍攝系統實驗步驟 25 第三章 結果與討論 26 3-1 不同參數條件下對於顆粒床平均溫度之影響 26 3-2 不同參數條件下的顆粒床平均熱傳遞係數 29 3-3 不同參數條件下對於顆粒床速度場與面積比 30 3-4 平均熱傳遞係數與流動層面積比之關係 32 第四章 結論 33 參考文獻 34

    [1] C. S. Campbell., ‘‘Rapid granular flows,’’ Annual Review of Fluid Mechanics, Vol. 22, pp. 57-92, 1990.
    [2] H. M. Jaeger., S. R. Nagel., and R. P. Behringer., ‘‘Granular solids, liquids, and gases,” Reviews of Modern Physics, Vol. 68, pp. 1259-1273, 1996.
    [3] Y. Forterre. and O. Pouliquen., ‘‘Flows of dense granular media,” Annual Review of Fluid Mechanics, Vol. 40, pp. 1-24, 2008.
    [4] S. S. Hsiau. and Y. M. Shieh., ''Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows," Chemical Engineering Science, Vol. 55, pp. 1969-1979, 2000.
    [5] GDR MiDi., ‘‘On dense granular flows,’’ European Physical Journal E, Vol. 14, pp. 341-365, 2004.
    [6] B. Bellocq., T. Ruiz., G. Delaplace., A. Duri., and B. Cuq., ‘‘Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates,” Journal of Food Engineering, Vol. 195, pp. 235-246, 2017.
    [7] X. Liu., J. Gong., Z. Zhang., and W. Wua., ‘‘An image analysis technique for the particle mixing and heat transfer process in a pan coater,” Powder Technology, Vol. 295, pp. 161-166, 2016.
    [8] A. Rosato., K. J. Strandburg., F. Prinz., and R. H. Swendsen., ‘‘Why the Brazil Nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol.58, pp. 1038-1040, 1987.
    [9] N. Nityanand., B. Manley., and H. Henein., ‘‘An analysis of radial segregation for different sized spherical solids in rotary cylinders,” Metallurgical Transactions B, Vol.17B, pp. 247-257, 1986.
    [10] G. H. Ristow., ‘‘Particle mass segregation in a two-dimensional rotating drum,’’ Europhysics Letters, Vol. 28, pp. 97-101, 1994.
    [11] N. Jain., J. M. Ottino., and R. M. Lueptow., ‘‘Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol.7, pp. 69-81, 2005.
    [12] H. Henein., J. K. Brimacombe., and A. P. Watkinson., ‘‘Experimental study of transverse bed motion in rotary kilns,” Metallurgical Transactions B, Vol. 14B, pp. 191-205, 1983.
    [13] J. Mellmann., ‘‘The transverse motion of solids in rotating cylinders—forms of motion and transition behavior,’’ Powder Technology, Vol. 118, pp. 251-270, 2001.
    [14] A. A. Boateng. and P. V. Barr., ‘‘Modelling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chemical Engineering Science, Vol. 51, pp. 4167-4181, 1996.
    [15] A. Ingram., J. P. K. Seville., D. J. Parker., X. Fan., and R. G. Forster., ‘‘Axial and radial dispersion in rolling mode rotating drums,” Powder Technology, Vol. 158, pp. 76-91, 2005.
    [16] S. J. Rao., S. K. Bhatia., and D. V. Khakhar., ‘‘Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system,” Powder Technology, Vol. 67, pp. 153-162, 1991.
    [17] R.Y. Yang., R. P. Zou., and A. B. Yu., ‘‘Microdynamic analysis of particle flow in a horizontal rotating drum,” Powder Technology, Vol. 130, pp. 138-146, 2003.
    [18] A. A. Boateng. and P. V. Barr., ‘‘Granular flow behaviour in the transverse plane of a partially filled rotating cylinder,” Journal of Fluid Mechanics, Vol. 330, pp. 233-249, 1997.
    [19] A. A. Boateng., ‘‘Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase Flow, Vol. 24, pp. 499-521, 1998.
    [20] Ashish V. Orpe. and D. V. Khakhar., ‘‘Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Physical Review E, Vol. 64, pp. 031302 1-13, 2001.
    [21] S. H. Chou., H. J. Hu., and S. S. Hsiau., ‘‘Investigation of friction effect on granular dynamic behavior in a rotating drum,” Advanced Powder Technology, Vol. 27, pp. 1912-1921, 2016.
    [22] X. Xiao., Y. Tan., H. Zhang., R. Deng., and S. Jiang., ‘‘Experimental and DEM studies on the particle mixing performance in rotating drums: Effect of area ratio,” Powder Technology, Vol. 314, pp. 182-194, 2017.
    [23] L. S. Fan. and C. Zhu., Principles of gas-solid flows. Cambridge University Press, 1998.
    [24] I. H. Tavman., ‘‘Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 169-176, 1996.
    [25] W. L. Vargas. and J. J. McCarthy., ‘‘Heat conduction in granular materials,” AIChE Journal, Vol. 47, pp. 1052-1059, 2001.
    [26] E. E. Gonzo., ‘‘Estimating correlations for the effective thermal conductivity of granular materials,” Chemical Engineering Journal, Vol. 90, pp. 299-302, 2002.
    [27] B. Metzger., O. Rahli., and X. Yin., ‘‘Heat transfer across sheared suspensions: role of the shear-induced diffusion,” Journal of Fluid Mechanics, Vol. 724, pp. 527-552, 2013.
    [28] J. Yang., J. Wang., S. Bu., M. Zeng., Q. Wang., and A. Nakayama., ‘‘Experimental analysis of forced convective heat transfer in novel structured packed beds of particles,” Chemical Engineering Science, Vol. 71, pp. 126-137, 2012.
    [29] M. Naghash., F. Fathieh., R. W. Besant., R. W. Evitts., and C. J. Simonson., ‘‘Measurement of convective heat transfer coefficients in a randomly packed bed of silica gel particles using IHTP analysis,” Applied Thermal Engineering, Vol. 106, pp. 361-370, 2016.
    [30] V. V. R. Natarajan. and M. L. Hunt., ‘‘Heat transfer in vertical granular flows,” Experimental Heat Transfer, Vol. 10, pp. 89-107, 1997.
    [31] D. G. Wang. and C. S. Campbell., ‘‘Reynolds analogy for a shearing granular material,” Journal of Fluid Mechanics, Vol. 244, pp. 527-546, 1992.
    [32] S. S. Hsiau. and M. L. Hunt., ‘‘Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Journal of Heat Transfer-Transactions of the ASME, Vol. 15, pp. 541-548, 1993.
    [33] A. A. Boateng. and P. V. Barr., ‘‘A thermal model for the rotary kiln including heat transfer within the bed,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 2131-2147, 1996.
    [34] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Experimental study of the contact heat transfer coefficient between the covered wall and solid bed in rotary drums,” Chemical Engineering Science, Vol. 82, pp. 312-318, 2012.
    [35] E. U. Schlunder., ‘‘Heat transfer to packed and stirred beds from the surface of immersed bodies,’’ Chemical Engineering and Processing, Vol. 18, pp. 31-53, 1984.
    [36] G. W. J. Wes., A. A. H. Drinkenburg., and S. Stemerdisg., ‘‘Heat transfer in a horizontal rotary drum reactor,” Powder Technology, Vol. 13, pp. 185-192, 1976.
    [37] J. Lehmberg., M. Hehl., and K. Schugerl., ‘‘Transverse mixing and heat transfer in horizontal rotary drum reactors,” Powder Technology, Vol. 18, pp. 149-163, 1977.
    [38] W. N. Sullivan. and R. H. Sabersky., ‘‘Heat transfer to flowing granular media,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 97-107, 1975.
    [39] S. -Q. Li., L. -B. Ma., W. Wan., and Q. Yan., ‘‘A mathematical model of heat transfer in a rotary kiln thermo-reactor,” Chemical Engineering & Technology, Vol. 28, pp. 1480-1489, 2005.
    [40] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Influence of operational parameters and material properties on the contact heat transfer in rotary kilns,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 7941-7948, 2012.
    [41] A. I. Nafsun., F. Herz., E. Specht., V. Scherer., and S. Wirtz., ‘‘Heat transfer experiments in a rotary drum for a variety of granular materials,” Experimental Heat Transfer, Vol. 29, pp. 1-16, 2016.
    [42] I. Figueroa., W. L. Vargas., and J. J. McCarthy., ‘‘Mixing and heat conduction in rotating tumblers,” Chemical Engineering Science, Vol. 65, pp. 1045-1054, 2010.
    [43] H. N. Emady., K. V. Anderson., W. G. Borghard., F. J. Muzzio., B. J. Glasser., and A. Cuitino., ‘‘Prediction of conductive heating time scales of particles in a rotary drum,” Chemical Engineering Science, Vol. 152, pp. 45-54, 2016.
    [44] B. Chaudhuri., F. J. Muzzio., and M. S. Tomassone., ‘‘Experimentally validated computations of heat transfer in granular materials in rotary calciners,” Powder Technology, Vol. 198, pp. 6-15, 2010.
    [45] Q. Xie., Z. Chen., Q. Hou., A. B. Yu., and R. Yang., ‘‘DEM investigation of heat transfer in a drum mixer with lifters,” Powder Technology, Vol. 314, pp. 175-181, 2017.
    [46] N. Gui. and J. Fan., ‘‘Numerical study of heat conduction of granular particles in rotating wavy drums,” International Journal of Heat and Mass Transfer, Vol. 84, pp. 740-751, 2015.
    [47] S. S. Hsiau. and H. W. Jang., ‘‘Measurements of velocity fluctuations of granular materials in a shear cell,” Experimental Thermal and Fluid Science, Vol. 17, pp. 202-209, 1998.
    [48] S. S. Hsiau. and W. L. Yang., ‘‘Stresses and transport phenomena in sheared granular flows with different wall conditions,” Physics of Fluids, Vol. 14, pp. 612-621, 2002.
    [49] V. Jasti. and C. F. Higgs III., ‘‘Experimental study of granular flows in a rough annular shear cell,” Physical Review E, Vol. 78, pp. 041306 1-8, 2008.
    [50] C. C. Liao., M. L. Hunt., S. S. Hsiau., and S. H. Lu., ‘‘Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration,” Physics of Fluids, Vol. 26, pp. 073302 1-14, 2014.
    [51] U. D’Ortona. and N. Thomas., ‘‘Influence of rough and smooth walls on macroscale flows in tumblers,” Physical Review E, Vol. 92, pp. 062202 1-12, 2015.
    [52] L. T. Sheng., C. Y. Kuo., Y. C. Tai., and S. S. Hsiau., ‘‘Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute,” Experiments in Fluids, Vol. 51, pp. 1329-1342, 2011.
    [53] C. E. Willert. and M. Gharib., ‘‘Digital particle image velocimetry,” Experiments in Fluids, Vol. 10, pp. 181-193, 1991.

    QR CODE
    :::