跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳致堯
Zi-Yu Chen
論文名稱: 單源熱蒸鍍製備CsPbBr3無機鈣鈦礦太陽能電池之研究
Inorganic CsPbBr3 Perovskite Solar Cell by Single-source Vacuum Deposition
指導教授: 詹佳樺
Chia-Hua Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 單源熱蒸鍍無機鈣鈦礦太陽能電池鈣鈦礦
外文關鍵詞: CsPbBr3, Inorganic CsPbBr3 Perovskite, Solar Cell, Single-source Vacuum Deposition
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機鈣鈦礦太陽能電池雖然有很高的效率,但由於其對光、熱及溼氣的穩定性較差,近年轉而對無機的CsPbX3系列感興趣,而其中CsPbBr3具有最好的耐候性。目前研究的製程主要有旋塗和蒸鍍,可是旋塗缺點是無法大面積製造及均勻性較差,而蒸鍍的方法幾乎都是使用雙源蒸鍍PbBr2及CsBr,但參考我們實驗室在之前對CsPbBr3的研究,單源熱蒸鍍CsPbBr3粉末可得到更高純度的CsPbBr3薄膜。因此本研究使用單源熱蒸鍍方式,製作FTO/c-TiO2/m-TiO2/CsPbBr3/碳膠的鈣鈦礦太陽能電池。
    起初參考本實驗室過去的研究,更換主動層為單源熱蒸鍍的CsPbBr3薄膜,製作FTO/c-TiO2/m-TiO2/CsPbBr3/spiro-OMeTAD/Ag鈣鈦礦太陽能電池。在研究過程中,我們發現即使XRD檢測薄膜中只有CsPbBr3的特徵峰,但製作出來的電池卻沒有效率,而後利用正確的熱退火溫度與時間,得到有效率的電池,但還是有表面破洞嚴重及穩定性差等缺點。其中穩定性差主要原因為有機的電洞傳輸層spiro-OMeTAD,為了匹配能階且具有電洞傳輸能力,將Ag電極換成碳膠電極,變成無機的鈣鈦礦太陽能電池。
    之後我們也發現單源熱蒸鍍CsPbBr3粉末會因為熔點的關係,會有Pb多的部分像是CsPb2Br5等會影響電性的相在底層,在熱退火時雖然能轉變成CsPbBr3,可是卻會產生破洞,而當在CsPbBr3層前加入CsBr層,則能得到完整的CsPbBr3薄膜,在經過CsBr添加與熱退火時間調整後,最後得到Voc=1.56V、Jsc=4.89mA/cm2、FF=78.17%以及PCE=5.95%的無機鈣鈦礦太陽能電池,在相對溼度40%以下的環境下經過840小時,依然保有94%原始效率,並使用UV-visible、SEM、EIS、TRPL等儀器來分析最佳效率電池,確認CsPbBr3層具有純CsPbBr3相、較大晶粒尺寸、垂直方向為單顆晶粒厚度、高品質無破洞等優點。


    Recently, scientists have applied perovskite materials to solar cell、LEDs and other optoelectronic devices because of their excellent photoelectric properties. As far as we know, organic perovskite has high photoelectric conversion efficiency, but its weather resistance is quite poor. Therefore, in our study we use inorganic perovskite CsPbBr3 with better stability to make perovskite solar cell. And then, we build perovskite solar cell structure as FTO/c-TiO2/m-TiO2/CsPbBr3/carbon.
    We found single-source evaporation CsPbBr3 has Pb rich phenomenon in the bottom layer. Through annealing time and CsBr added thickness adjustment, single-source vacuum deposition CsPbBr3 solar cell reach Voc=1.56V、Jsc=4.89mA/cm2、FF=78.17, and PCE=5.95%. At last, we use UV-visible, SEM, EIS, TRPL to analyze the best efficiency solar cell. And the best solar cell maintain the original efficiency of 94% in an environment with a humidity of 40%.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xi 第1章 緒論 1 1-1 前言 1 1-2 太陽能電池的分類 2 1-2-1 矽太陽能電池 2 1-2-2 多元化合物太陽能電池 3 1-2-2 有機太陽能電池 3 1-3 鈣鈦礦太陽能電池 3 1-4 有機鈣鈦礦太陽能電池發展 4 1-5 無機鈣鈦礦太陽能電池發展 6 1-5-1 CsPbI2Br無機鈣鈦礦太陽能電池 6 1-5-2 CsPbI3無機鈣鈦礦太陽能電池 9 1-6 CsPbBr3材料探討 10 1-6-1 旋塗法製備CsPbBr3無機鈣鈦礦太陽能電池 11 1-6-2 蒸鍍法製備CsPbBr3無機鈣鈦礦太陽能電池 14 1-6-3 改善熱退火之蒸鍍法CsPbBr3無機鈣鈦礦太陽能電池 15 1-6-4 改變電洞傳輸層之CsPbBr3無機鈣鈦礦太陽能電池 18 1-6-5 其他CsPbBr3之無機鈣鈦礦太陽能電池 20 1-6-6 改變CsPbBr3蒸鍍法之無機鈣鈦礦太陽能電池 21 1-7 研究動機 24 第2章 實驗方法 25 2-1 實驗材料及儀器 25 2-1-1 實驗材料 25 2-1-2 實驗儀器 26 2-2 實驗步驟 27 2-2-1 FTO導電玻璃基板清洗 27 2-2-2 二氧化鈦(TiO2)緻密層合成與塗佈 27 2-2-3 二氧化鈦(TiO2)介孔層合成與塗佈 27 2-2-4 CsPbBr3蒸鍍 27 2-2-5 碳膠刮塗 27 2-3 實驗分析方式 27 第3章 結果與討論 29 3-1 CsPbBr3電池製作 29 3-1-1 CsPbBr3層分析方法 29 3-1-2 UPS分析CsPbBr3電池各層能階配比 30 3-2 熱退火處理CsPbBr3膜 34 3-3 銀電極換成碳膠電極 36 3-4 改善電池表面凹陷情形 37 3-5 最佳效率電池分析 43 3-5-1 UV-visible分析 44 3-5-2 EQE量測 45 3-5-3 SEM上視圖分析 46 3-5-4 EIS量測 47 3-5-5 TRPL分析 48 3-5-6 耐候性分析 49 第4章 結論 50 參考文獻 51

    [1] N. R. E. L. (NREL). “Best Research-Cell Efficiencies,” http://www.nrel.gov/pv/.
    [2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [3] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin flim mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports, vol. 2, pp. 1−7, 2012.
    [4] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, and J. H. Noh, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376−1379, 2017.
    [5] D. Bi, C. Yi, J. Luo, J. D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nature Energy, vol. 1, no. 10, pp. 1−5, 2016.
    [6] A. F. Akbulatov, L. A. Frolova, N. N. Dremova, I. Zhidkov, V. M. Martynenko, S. A. Tsarev, S. Y. Luchkin, E. Z. Kurmaev, S. M. Aldoshin, K. J. Stevenson, and P. A. Troshin, “The Journal of Physical Chemistry Letters, vol. 11, no. 1, pp. 333−339, 2020.
    [7] Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S. A. T. Redfern, H. Wei, H. Wang, H. Shen, W. Zhang, W. Zheng, H. Zhang, J. S. Tse, and B. Yang, “Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V,” Advanced Materials, vol. 30, no. 9, pp. 1705393, 2018.
    [8] L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip, and Y. Cao, “Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%,” Advanced Materials, vol. 30, no. 33, pp. 1802509, 2018.
    [9] H. Y. Lin, C. Y. Chen, B. W. Hsu, Y. L. Cheng, W. L. Tsai, Y. C. Huang, C. S. Tsao, and H. W. Lin, “Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand-Layer Rapid Deposition,” Advanced Functional Materials, vol. 29, no. 44, pp. 1905163, 2019.
    [10] C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang, and A. H. Baillie, “Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency,” Journal of Materials Chemistry A, vol. 6, no. 14, pp. 5580–5586, 2018.
    [11] Z. Yao, W. Zhao, S. Chen, Z. Jin, and S. F. Liu, “Mn Doping of CsPbI3 Film Towards High-Efficiency Solar Cell,” ACS Applied Energy Materials, vol. 3, no. 6, pp. 5190−5197, 2020.
    [12] S. C. Dávila, H. Funk, R. Lovrinčić, C. Müller, M. Sendner, O. C. Mirédin, F. Lehmann, R. Gunder, A. Franz, S. Levcenco, A. V. Cohen, L. Kronik, B. Haas, C. T. Koch, and D. A. Ras, “Spatial Phase Distributions in Solution-Based and Evaporated Cs− Pb−Br Thin Films,” The Journal of Physical Chemistry C, vol. 123, no. 29, pp. 17666−17677, 2019.
    [13] G. Maity, and S. K. Pradhan, “Composition Related Structural Transition Between Mechanosynthesized CsPbBr3 and CsPb2Br5 Perovskites and Their Optical Properties,” Journal of Alloys and Compounds, vol. 816, pp. 152612, 2020.
    [14] J. Liu, L. Zhu, S. Xiang, Y. Wei, M. Xie, H. Liu, W. Lia, and H. Chen, “Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells,” Sustainable Energy & Fuels, vol. 3, no. 1, pp. 184–194, 2019.
    [15] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, and G. Liao, “Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering,” Nano energy, vol. 56, pp. 184-195, 2019.
    [16] J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, and Q. Tang, “Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V,” Advanced Energy Materials, vol. 8, no. 31, pp. 1802346, 2018.
    [17] Y. Zhao, J. Duan, Y. Wang, X. Yang, and Q. Tang, “Precise Stress Control of Inorganic Perovskite Films for Carbon-Based Solar Cells with an Ultrahigh Voltage of 1.622 V,” Nano Energy, vol. 67, pp. 104286, 2020.
    [18] J. Lei, F. Gao, H. Wang, J. Li, J. Jiang, X. Wu, R. Gao, Z. Yang, S.F. Liu, “Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation”, Solar Energy Materials and Solar Cells, vol. 187, pp. 1-8, 2018.
    [19] H. Wang, Y. Wu, M. Ma, S. Dong, Q. Li, J. Du, H. Zhang, and Q. Xu, “Pulsed Laser Deposition of CsPbBr3 Films for Application in Perovskite Solar Cells,” ACS Applied Energy Materials, vol. 2, no. 3, pp. 2305−2312, 2019.
    [20] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, and S. F. Liu, “Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation,” Journal of Alloys and Compounds, vol. 818, pp. 152903, 2020.
    [21] T. Xiang, Y. Zhang, H. Wu, J. Li, L. Yang, K. Wang, J. Xia, Z. Deng, J. Xiao, W. Li, Z. Ku, F. Huang, J. Zhong, Y. Peng, Y. B. Cheng, “Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 206, pp. 110317, 2020.
    [22] Y. Zhang, L. Luo, J. Hua, C. Wang, F. Huang, J. Zhong, Y. Peng, Z. Ku, Y. B. Cheng, “Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method,” Materials Science in Semiconductor Processing, vol. 98, pp. 39−43, 2019.
    [23] X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu, and J. Yang, “All-Inorganic CsPbBr3 Perovskite Solar Cells with 10.45% Efficiency by Evaporation-Assisted Deposition and Setting Intermediate Energy Levels,” ACS Applied Materials & Interfaces, vol. 11, no. 33, pp. 29746−29752, 2019.
    [24] Y. Zhao, H. Xu, Y. Wang, X. Yang, J. Duan, Q. Tang, “10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells,” Journal of Power Sources, vol. 440, pp. 227151, 2019.
    [25] J. Duan, Y. Zhao, Y. Wang, X. Yang, and Q. Tang, “Hole-Boosted Cu(Cr,M)O2 Nanocrystals for All-Inorganic CsPbBr3 Perovskite Solar Cells”, Angewandte Chemie, vol. 131, no. 45, pp.16293−16297, 2019.
    [26] T. Chen, G. Tong, E. Xu, H. Li, P. Li, Z. Zhu, J. Tang, Y. Qi and Y. Jiang, “Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with longterm stability”, Journal of Materials Chemistry A, vol.7, no.36, pp. 20597−20603, 2019.
    [27] Z. Zong, B. He, J. Zhu, Y. Ding, W. Zhang, J. Duan, Y. Zhao, H. Chen, Q. Tang, “Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite,” Solar Energy Materials and Solar Cells, vol. 209, pp. 110460, 2020.
    [28] W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu, Y. Ding, H. Chen, and Q. Tang, “Interface Engineering of Imidazolium Ionic Liquids toward Efficient and Stable CsPbBr3 Perovskite Solar Cells,” ACS Applied Materials & Interfaces, vol. 12, no. 4, pp. 4540-4548, 2020.
    [29] G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, “Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells,” Nano Energy, vol. 65, pp. 104015, 2019.
    [30] G. Tong, T. Chen, H. Li, W. Song, Y. Chang, J. Liu, L. Yu, J. Xu, Y. Qi, and Y. Jiang, “High Efficient Hole Extraction and Stable All-Bromide Inorganic Perovskite Solar Cells via Derivative-Phase Gradient Bandgap Architecture”, Solar RRL, vol. 3, no. 5, pp. 1900030, 2019.
    [31] 紀仲嘉, 「利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池」,國立中央大學,碩士論文, 民國107年。
    [32] 林書丞, 「單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析」,國立中央大學,碩士論文, 民國108年。
    [33] 張哲嘉, 「利用鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究」, 國立中央大學,碩士論文, 民國106年。

    QR CODE
    :::