跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉厚佑
Hou-yu Liu
論文名稱: 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
Effect of cAMP and Other Signaling Molecules on Resistin Release in Adipocytes
指導教授: 金秀蓮
S.-L. Catherine Jin
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 98
語文別: 中文
論文頁數: 48
中文關鍵詞: 磷酸肌醇3激酶蛋白激酶C腫瘤壞死因子環狀核苷酸磷酸雙酯酶環狀腺苷單磷酸脂肪細胞阻抗素糖原合成酶激酶-3
外文關鍵詞: PI3K, GSK3, adipocyte, resistin, cAMP, PDE, TNF-alpha, PKC
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抵抗素(resistin)是體內糖類代謝的重要調控者,與肥胖引起的胰島素阻抗有關。文獻報導isoproterenol (ISO)與TNF-?可抑制3T3-L1脂肪細胞表現resistin mRNA。然而resistin的釋出是否受cAMP訊息傳遞調控目前仍不清楚。環狀核苷酸磷酸雙酯酶(PDE)是細胞內分解cAMP與cGMP的酵素,對調節環狀核苷酸的濃度及其訊息傳導扮演著重要的角色。因此本研究主要目的在探討cAMP-PDE在脂肪細胞內對resistin表現之影響,主要利用ELISA方法測量藥物處理3T3-L1與小鼠脂肪細胞釋放resistin之改變。結果顯示ISO可抑制兩種脂肪細胞釋放resistin量,且cilostazol與rolipram均可增強ISO的抑制作用,然而ISO的抑制作用不會被PKA抑制劑H89回復。以dibutyryl-cAMP (dbcAMP)處理小鼠或3T3-L1脂肪細胞,我們發現僅小鼠脂肪細胞之resistin釋放有顯著下降,至於3T3-L1脂肪細胞,dbcAMP與PDE3抑制劑cilostazol共同處理可明顯抑制resistin釋放,但rolipram則無此協同效果,再者,cilostazol與dbcAMP的抑制作用可被H89完全回復,顯示此抑制作用是藉由抑制PDE3活性進而活化PKA訊息傳導所致。TNF-?亦可降低resistin釋放,但此抑制作用不受cilostazol或cAMP訊息傳導所調控。文獻報導TNF-?抑制resistin表現是由於活化iNOS-NO (nitric oxide),雖然NO可活化guanylyl cyclase (GC)使cGMP濃度增加,但8-bromo-cGMP對resistin釋放並無影響,表示TNF-?的抑制作用不是藉由增加細胞內cGMP的濃度所致。本研究也利用PKC活化劑phorbol myristate acetate (PMA)與鈣離子增升劑ionomycin處理3T3-L1脂肪細胞,結果顯示PMA或ionomycin單獨或共同處理細胞均可抑制resistin釋放。我們也發現,PI3K抑制劑LY294002與GSK3抑制劑LiCl均可抑制3T3-L1脂肪細胞釋放resistin,綜合以上結果得知,脂肪細胞分泌resistin會被多種訊息傳遞分子調控,包括cAMP/PDE3/PKA、Ca+2/PKC與PI3k等


    The adipocyte-secreted hormone resistin has been implicated in regulation of glucose homeostasis, adipogenesis and inflammation, and is linked to obesity-related insulin resistance. Evidence indicates that isoproterenol (ISO) and tumor necrosis factor-? (TNF-?? are pivotal negative mediators in resistin gene expression, but mechanisms underlying these effects remain largely unknown. Cyclic AMP signaling is known to be critical in regulation of lipid and glucose metabolism, and intracellular cAMP concentrations can be regulated by cAMP-hydrolyzing phosphodiesterases (cAMP-PDEs). In this study, we investigated the effects of cAMP-PDE on resistin release in mouse primary and 3T3-L1 adipocytes. By ELISA analysis, we observed that resistin release was significantly reduced in the cells following ISO treatment. The release was further decreased by co-stimulation of the cells with the PDE3 inhibitor cilostazol or PDE4 inhibitor rolipram. Howover, this inhibition was not reversed by the PKA inhibitor H89, indicating that ISO/cAMP-regulated resistin release is not mediated by PKA activity. We have also found that treatment of cells with dibutyryl-cAMP (dbcAMP) in combination with cilostazol, but not rolipram, leads to a marked decrease in resistin release in the adipocytes and this decrease was fully reversed by H89, indicating that the suppression of resistin release by dbcAMP and cilostazol requires PKA activation. The resistin release in the adipocytes was also blocked by TNF-? treatment. However, this effect was not regulated by cilostazol or dbcAMP. We further observed that the resistin release in 3T3-L1 adipcytes was inhibited by the PKC activator phorbol myristate (PMA) as well as the Ca+2 ionophore ionomycin. The PI3K inhibitor LY294002 and the GSK3 inhibitor LiCl also exhibited inhibitory effects on the resistin release in these cells. Taken together, these findings indicate that the resistin release in mouse adipocytes is regulated by several signaling molecules, including cAMP/PDE3/PKA, Ca+2/PKC, PI3K and GSK3.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 縮寫檢索表 vii 第一章 緒論 1 1.1脂肪組織 1 1.2阻抗素 1 1.3環狀核苷磷酸雙酯酶 (cyclic nucleotide phosphiesterase: PDE) 2 1.4 cAMP與脂肪代謝 3 1.5.1 PDE3家族 3 1.5.2 PDE3B及其調控 3 1.5.3 PDE3B與糖尿病的關係 4 1.6 TNF-?和胰島素阻抗關係 5 1.7 cAMP與resistin關係 6 研究目的 7 第二章 材料與方法 8 2.1實驗細胞株 8 2.2實驗小鼠 8 2.3實驗材料 9 2.4細胞培養 9 2.5細胞計數法 9 2.6 3T3-L1細胞分化 9 2.7 3T3-L1細胞株的處理 9 2.8細胞萃取抑製備法 10 2.9蛋白質濃度檢測 10 2.10酵素免疫分析法 11 2.11 PDE酵素活性檢測 11 2.12分離小鼠脂肪細胞 12 2.13小鼠脂肪細胞處理 12 第三章 實驗結果 14 3.1 isoproterenol和dibutyryl-cAMP對於脂肪細胞釋放resistin的影響 14 3.2 PDE與PKA對脂肪細胞釋放resistin的影響 15 3.3 TNF-?與PDE對脂肪細胞釋放resistin之影響 17 3.4 PKC與鈣離子對於脂肪細胞釋放resistin之影響 18 3.5 PI3K與GSK3對脂肪細胞釋放resistin之影響 18 第四章 討論 20 4.1 脂肪細胞中PDE調控之cAMP訊息傳遞與resistin關係 20 4.2 TNF-?與下游訊息傳遞分子對釋放resistin之影響 23 4.3 PKC對於3T3-L1脂肪細胞釋放resistin之影響 23 4.4 PI3K與GSK3對於3T3-L1脂肪細胞釋放resistin之影響 24 第五章 參考文獻 25 第六章 圖與圖解 31 第七章 附錄 46 附圖一、酵素免疫分析法(ELISA)標準曲線圖 46 附圖二、抑制劑結構、分子量與IC50 47 附表一、藥物對3T3-L1脂肪細胞抑制阻抗素釋放之整理 48 附表二、藥物對小鼠脂肪細胞抑制阻抗素釋放之整理 48 圖一、3T3-L1脂肪細胞在不同ISO濃度或不同時間刺激下對resistin釋放的影響 31 圖二、小鼠初代脂肪細胞在不同ISO濃度或不同時間刺激下對resistin釋放之影響 32 圖三、Dibutyryl-cAMP對3T3-L1脂肪細胞及小鼠初代脂肪細胞釋放resistin之影響 33 圖四、Rolipram、cilostazol和H89對ISO抑制3T3-L1脂肪細胞釋放resistin之影響 34 圖五、Rolipram、cilostazol、H89與dbcAMP共同作用對3T3-L1脂肪細胞釋放resistin之影響 35 圖六、Rolipram和cilostazol對dbcAMP抑制小鼠初代脂肪細胞釋放resistin之影響 36 圖七、dbcAMP對PDE4D+/+與PDE4D-/-小鼠初代脂肪細胞釋放resistin之影響 37 圖八、不同濃度TNF-?對3T3-L1脂肪細胞釋放resistin之影響 38 圖九、Cilostazol和H89對TNF-?抑制3T3-L1脂肪細胞釋放resistin之影響 39 圖十、??bromo-cGMP對3T3-L1脂肪細胞釋放resistin之影響 40 圖十一、PMA與Ionomycin對3T3-L1脂肪細胞釋放resistin之影響 41 圖十二3T3-L1脂肪細胞在不同濃度LY294002刺激下對於resistin釋放之影響 43 圖十三、GSK3抑制劑LiCl對3T3-L1脂肪細胞釋放resistin之影響 44 圖十四、3T3-L1脂肪細胞與小鼠初代脂肪細胞內PDE活性的表現 45

    1.Trayhurn, P., Endocrine and signaling role of adipose tissue: New perspective on fat, Acta Physiol. Scand. (2005) 184: 285-293
    2.Steppan CM, Bailey ST, Bhat S, Brown EJ, BAnerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA The hormone resistin links obesity to diabetes. Nature (2001) 409:307-312
    3.Kee-Hong Kim, Kichoon Lee, Yang Soo Moon, and Hei Sook Sul A Cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Boil Chem (2001) 276: 11252-6
    4.Holocomb IN, Kabakoff RC, Chan B et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J (2000) 19: 4046-55
    5.Steppan CM, Lazar MA, et al. A family of tissue-specific resistin-like moleciles. Proc Natl Acad Sci USA (2001) 98:592
    6.Mikako Degawa-Yamauchi, Robert V. Considine et al,. Serum Resistin (FIZZ3) Protein Is Increased in Obese Humans J. Clin. Endocrinol. Metab. (2003) 88: 5452
    7.Strausberg R. L., Feingold E. A., Grouse L. H., Derge J. G., Klausner R. D., Collins F. S. et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA (2002) 99: 16899–16903
    8.Banerjee R. R. and Lazar M. A. Dimerization of resistin and resistin-like molecules in determined by a single cysteine. J. Biol. Chem. (2001) 276: 25970–25973
    9.E.W. Sutherland and T.W. Rall, J. Biol. Chem. (1985) 232:1077-1091.
    10.Conti M, Jin SL. The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic Acid Res. Mol. Biol. (1999) 63:1
    11.Francis SH, Turko IV, Corbin JD. Cyclic nucleotide phosphodiesterases: Relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. (2000) 65:1
    12.Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol. (2000) 12:174–79
    13.Beavo JA, Conti M, Heaslip RJ. Mol. Pharmacol. (1994) 46:399–405
    14.Victoria Boswell-Smith, Clive P. Page (2006) Phosphodesterase inhibitors. British Journal of Pharmacology 147:s252
    15.Degerman, E., Leroy, M. J., Taira, M., Belfrage, P., and Manganiello, V. C. (1996) in Diabetes Mellitus, A Clinical and Fundamental Textbook (LeRoith, D., Olefsky, J., and Taylor, S., eds) pp. 197–204, Lippincott Raven, Philadelphia, PA
    16.Makino, H., Manganiello, V. C., and Kono, T. (1994) Annu. Rev. Physiol. 56,273–295
    17.Belfrage, P., Donner, J., Eriksson, H., and Stalfors, P. (1986) in Mechanisms of Insulin Action (Belfrage, P., Donner, J., and Stralfors, P., eds) pp. 323–340, Elsevier Science Publishers B.V., Amsterdam
    18.Smith, C. J., and Manganiello, V. C. Mol. Pharmacol. (1988) 35: 381–386
    19.Chen J., Wang L., Boeg Y. S., Xia B. and Wang J. Differential dimerization and association among resistin family proteins with implications for functional specificity. J. Endocrinol. (2002) 175: 499–504.
    20.Beebe, S. J., Redman, J. B., Blackmore, P. F., and Corbin, J. D. J. Biol. Chem. (1985) 260:15781–15788
    21.Shakur. Y., L. Stenson Holst, T. Rahn Landstöm. et al. Regulation and fuction of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol (2001) 66:241
    22.Kenan. Y., T. Murata. Y. Shakur. et al. Functions of the N-terminal region of cyclic nucleotide phosphodiestrase 3 (PDE3) isoforms. J Biol Chem (2000) 275:112331
    23.Shakur. Y., K. Takeda. Y Kenan. et al. Membrane localization of cyclic nucleotide efficient targeting to, and association of, PDE3 with endoplasmic reticulum. J Biol. Chem (2000) 275:38749.
    24.Varnerin, J.P, S.B. Patel, et al. Expression, refolding, and purification of recombinant human phosphodiesterase 3B: Definition of the N-terminus of the catalytic core. Protein Expr Purif (2004) 35 (2):225
    25.Nilsson, R., F. Ahmad, K. Swärd, et al. Plasma membrane cyclic nucleotide phosphodieaterase 3B (PDE3B) is associated with caveolae in primary rat adipocyte. Cell Signal (2006) 18 (10):1713
    26.Faiyaz Ahmad, V. Manganiello, et al. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem. J. (2007) 404:257–268
    27.Rondinone, C. M., E. Carvalho, T. Rahn, et al. Phosphorylation of PDE3B by phosphatidylinositol 3-kinase associated with the insulin receptor. J. Biol. Chem (2000) 275:10093
    28.Kitamura, T., Y. Kitamura, S. Kuroda, et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase. Akt Mol Cell Biol. (1999) 9:6286
    29.Zmusa-Trzebiatowska, E., A. Oknianska, V. Manganiello, et al. Role of PDE3B in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis in primary rat adipocyte. Cell Signal (2006) 3:382.
    30.Rahn, T., M. Ridderstråle, H. Tornqvist, et al. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. Studies using the selective inhibitor wortmannin. FEBS Lett (1994) 350:314.
    31.Wijkander. J., T. Rahn Landstöm, V. Manganiello, et al Insulin-induced phosphorylation and activation of phosphdiesterase 3B in rat adipocyte: Possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endorcinology (1998) 139:219
    32.Ahmad, F., L. N. Cong, L. Stenson Holst, et al. Cyclic nucleotide phosphodiesterase 3B is a down stream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. J Immounol (2000) 164 (9):4678.
    33.Smith. C. J., V. Vasta., E. Degerman, et al. Hormine-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation. J Biol Chem (1991) 266:13385
    34.Bilal Omar, Eva Degerman, et al. Regulation of AMP-activated protein kinase by cAMP in adipocytes: Roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cellular Signalling (2009) 21:760
    35.Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes (1997) 46:3
    36.Frayn, K. N., C. M. Willians, and P. Arner. Are increased plasma non-esterified fatty acid concentrations a risk marker for corconary heart disease and other chronic disease? Clin Sci (Lond) (1996) 90:243.
    37.Engfeldt P, Ostman J., et al. Phosphodiesterase activity in human subcutaneous adipose tissue in insulin- and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. (1982) Nov;55(5):983-8
    38.Hun Choi, Y., S. Park, S. Hockman, et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B (mPDE3B)-null mice. J. Clin Invest (2006) 116:3240
    39.Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest (1995) 95:2409–2415
    40.Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol (1992) 10:411–452.
    41.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science (1993) 259:87–91
    42.Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA (1994) 91:4854–4858.
    43.Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem (1991) 266:21839–21845
    44.Mathias Fasshauer, Ralf Paschke, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. (2002) 290:1084-1089
    45.Mathias Fasshauer, Ralf Paschke. et al, Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. (2001) 288:1027
    46.Chi-Chang Juan, Low-Tone Ho, et al. Involvement of iNOS and NO in TNF-?-downregulated resistin gene expression in 3T3-L1 adipocyte. Obesity (2008) 16:1219
    47.Mathias Fasshauer, Ralf Paschke, et al. Isoproterenol inhibits resistin gene expression through a Gs-protein-coupled pathway in 3T3-L1 adipocytes. FEBS letters (2001) 500: 60-63
    48.Dan Cassel, Thomas Pfeuffer, et al. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Nati. Acad. Sci (1987) 75:2669
    49.Kenneth B. Seamon, John W. Daly, et al. Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Nati. Acad. Sci (1981) 78:3363
    50.Charlotte K. Billington, Ian P. Hall, et al. A major functional role for phosphodiesterase 4D5 in human airway smooth muscle cells. Am J Respir Cell Mol. Biol. (2008) 38:1
    51.Alina Oknianska, Eva Degerman. et al, Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. (2007) 353:1080-1085
    52.Bradford, M. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72: 248-254
    53.Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc. Natl. Acad. Sci. (2002) 28;99(11):7628-33.
    54.Jin SL, Lan L, Zoudilova M, Conti M. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol. (2005) Aug 1;175(3):1523-31.
    55.Peter J. Havel et al, Effects of inhibiting transcription and protein synthesis on basal and insulin-stimulated leptin gene expression and leptin secretion in cultured rat adipocytes. Biochem. Biophys. Res. Commun (2003) 307:907-914
    56.Rupert C. Honnor, Constantine Londos, et al. cAMP-dependent protein kinase and lipolysis in rat adipocytes. J. Biol. Chem (1985) 260:15122
    57.Jiro Nakamura, Naomichi Okamura, and Yasushi Kawakami. Augmentation of lipolysis in adipocytes from fed rats, but not from starved rats, by inhibition of rolipram-sensitive phosphodiesterase 4 Archives of Biochemistry and Biophysics (2004) 425:106–114
    58. Rebecka Lindh, Eva Degerman, et al. Multisite phosphorylation of adipocyte and hepatocyte phosphodiesterase 3B. Biochimica et Biophysica Acta (2007) 1773:584–592
    59.Tova Rahn Landström, Eva Degerman, et al. Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor ? and cAMP. Biochem. J. (2000) 346:337-343.
    60. William P. Arnold, Ferid Murad, et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci (1977) 47:3203
    61. Mary L. Standaert, Robert V. Farese, et al Protein Kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes potential role in glucose transport. J Biol Chem (1997) 273:30075-30082.
    62. Nobuhiro Shojima, Tomoichiro Asano, et al. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes (2002) 51:1737
    63. Haiyan Song, Tomoichiro Asano, et al Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem. Biophys. Res. Commun (2002) 299:291-298.
    64.Yen-Hang Ch, Yung-Hsi Kao, et al 17?-Estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-??pathways. Endocrinology (2006) 147(9):4496-4504
    65. Stephen J. Oreña, Robert S. Garofalo, et al. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes. J Biol Chem (2000) 275:15765
    66.Ronadip R. Banerjee, Mitchell A. Lazar, et al. Regulation of fasted blood glucose by resistin. Science (2004) 303: 1195
    67. Michael Blüher, Ralf Paschke, et al. Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma. Diabetes care (2000) 23, 1591-1592
    68. Patti, M.E. Ann. NY Acad. Sci. (1999) 892: 187-203
    69. Christopher J. Hupfeld, Jerrold M. Olefsky, et al. ?-Arrestin 1 down-regulation after insulin treatment is associated with supersensitization of ?2 adrenergic receptor G?s signaling in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci (2003) 100:161
    70. So Youn Park, Ki Whan Hong, et al. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor ??transcription. JPET (2009) 329:571–579
    71. S.-L.Catherine Jin, Macro Conti, et al. Specific role of phosphodiesterase 4 B in lipopolysacharride-induced signaling in mouse macrophages. The Journal of Immunology. (2005) 175: 1523-1531
    72. Kimberly L. Doge-Kafka, Jonh D. Scott, et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature (2005) 437:574
    73. Debbie Willoughby, Dermot MF Cooper, et al. An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. The EMBO Journal (2006) 25:2051-2061
    74. Tao Xie, Lee S. Weinstein, et al. The alternative stimulatory G protein ?-subunit XL?s is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J Biol Chem (2006) 281: 18989–18999
    75. Gokhan S. Hotamisligil, Bruce M. Spiegelman, et al. Adipose expression of tumor necrosis factor-?:direct role in obesity-linked insulin resistance. Science (1993) 259:87
    76. Gokhan S. Hotamisligil, Bruce M. Spiegelmant, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-? and obesity-induced insulin resistance. Science (1996) 271:665
    77. Gautam Bandyopadhyay, Robert V. Farese, et al. Activation of protein Kinase C (?????and ?? by insulin in 3T3-L1 cells. J Biol Chem (1997) 272:2551
    78. Teddy T. C. Yang, Gerald R. Crabtree, et al. Role of transcription factor NFAT in glucose ans insulin homeostasis. Molecular and Cellular Biology (2006) 26:7372
    79. Takuya Tomaru, Mitchell A. Lazar, et al. Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferate-activated receptor ? and CCAAT/Enhancer-binding proteins. J Biol Chem (2009) 284:6116
    80. Haiyan Song, Tomoichiro Asano, et al. Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem. Biophys. Res. Commun (2002) 299:291
    81. Sarah E. Ross, Ormond A. MacDougald, et al. Glycogen synthase kinase 3 is an insulin-regulated C/EBP? kinase. Molecular and Cellular Biology (1999) 19:8433
    82. Darren A.E. Cross, Philip Cohen, et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Letters (1997) 406:211

    QR CODE
    :::