跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭亦晽
I-Lin Cheng
論文名稱: 基於散佈式耦合饋入架構之可調式多頻帶通濾波器
指導教授: 凃文化
Wen-Hua Tu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 濾波器步階式阻抗共振器散佈式耦合可調式多頻帶
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用散佈式耦合饋入技術以及步階式阻抗共振器(stepped-impedance resonator, SIR)的多頻帶通濾波器,由於散佈式耦合饋入技術的低負載效應,因此不需要額外的阻抗匹配電路。而步階式阻抗共振器具有縮小電路面積的功能,以及控制高頻諧波的位置。此兩種技術皆適合應用於設計多頻帶通濾波器。
    利用上述架構,在步階式阻抗共振器加上變容二極體,來達到具有可調整中心頻率之特性,且在通帶內頻率響應特性不變。每個通帶的共振路徑皆為獨立的,所以各個通帶皆能獨立設計和調整其中心頻率,故在電路設計上具有良好的自由度。於本論文中有多頻帶通濾波器以及可調式多頻帶通濾波器的設計原理、模擬結果與實作結果,最後利用實作之電路來驗證設計的方法是有效的。


    This thesis presents multi-band bandpass filter and tunable multi-band bandpass filter using distributed coupling technique and stepped-impedance resonator. Due to the low loading effect from distributed coupling technique, the proposed circuits does not need extra matching network. The stepped-impedance resonator can reduce the circuit size and control the harmonic. Both technologies are suitable for designing multi-band bandpass filter.
    Based on this structure, varactors are added to the SIR. For achieving the center frequency can be tuned, and the performance in the passband is invariant. Because the coupling path of each passband is independent, each passband can be fully controlled and designed independently. Therefore, the circuit design has high design freedom. All of the designs, simulations, and measurements are presented and discussed in this thesis. Finally, good agreement is also achieved between simulation and measurement.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 研究動機 1 1-2 文獻參考 2 1-3 論文架構 7 第二章 利用步階式阻抗共振器與散佈式耦合饋入架構之多頻帶通濾波器 8 2-1 利用步階式阻抗與散佈式耦合饋入架構之帶通濾波器 8 2-1.1 步階式阻抗共振器的設計原理 8 2-1.2 饋入結構分析 11 2-1.3 散佈式饋入技術之帶通濾波器設計 12 2-1.4 單頻帶通濾波器之電路實作與量測結果 16 2-2 使用此架構所設計之雙頻帶通濾波器 17 2-2.1 雙頻帶通濾波器架構 17 2-2.2 雙頻帶通濾波器之設計 18 2-2.3 雙頻帶通濾波器實作與量測結果 20 2-3 使用此架構所設計之三頻帶通濾波器 22 2-3.1 三頻帶通濾波器架構 22 2-3.2 三頻帶通濾波器之設計 23 2-3.3 三頻帶通濾波器實作與量測結果 27 2-4 結論 28 第三章 可調式多頻帶通濾波器 29 3-1 可調式帶通濾波器設計理論 29 3-1.1 可調式帶通濾波器設計 29 3-1.2 可調式帶通濾波器實作與量測結果 37 3-2 雙頻可調式帶通濾波器 39 3-2.1 雙頻可調式帶通濾波器之架構 39 3-2.2雙頻可調式帶通濾波器實作與量測結果 42 3-3 三頻可調式帶通濾波器 45 3-3.1 三頻可調式帶通濾波器之架構 45 3-3.2 三頻可調式帶通濾波器實作與量測結果 48 3-4 結論 52 第四章 結論 53 參考文獻 54

    [1] S. Sun, “A dual-band bandpass filter using a single dual-mode ring resonator”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 298-300, Jun. 2011.
    [2] S.-F. Chang, Y.-H. Jeng, J.-L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs”, Electron. Lett., vol. 40, no. 1, pp. 38-39, Jan. 2004.
    [3] Y.-C. Chang, C.-H. Kao, M.-H. Weng, R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780-782, Dec. 2009.
    [4] C.-F. Chen, T.-Y. Huang, R.-B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3550-3558, Sep. 2006.
    [5] L. Murmu, S. Das, A. Bage, “A compact tri-band bandpass filter using multi-mode stub-loaded resonator”, Proc. Asia-Pacific Microw. Conf.,pp.1-1, 2016
    [6] F.-C. Chen, Q.-X. Chu, Z.-H. Tu, "Tri-band bandpass filter using stub loaded resonators", Electron. Lett., vol. 44, no. 12, pp. 747-749, Jun. 2008.
    [7] C.-F. Chen, "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators", IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357-359, Jul. 2012.
    [8] Y.-H. Cho and G. M. Rebeiz, “Tunable 4-Pole noncontiguous 0.7– 2.1-GHz bandpass filters based on dual zero-value couplings,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 5, pp. 1579–1586, May 2015.
    [9] H.-Y. Tsai, T.-Y. Huang, and R.-B. Wu, “Varactor-tuned compact dual-mode tunable filter with constant passband characteristics,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 6, no. 9, pp. 1399–1407, Sep. 2016.
    [10] S.-X. Zhang, Z.-H. Chen and Q.-X. Chu, “Compact tunable balanced bandpass filter with novel multi-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 43–45, Jan. 2017.
    [11] K. Motoi, N. Oshima, M. Kitsunezuka, and K. Kunihiro, “A band-switchable and tunable nested bandpass filter with continuous 0.4–3GHz coverage,” in Proc. Eur. Microw. Conf., Oct. 2016, pp. 1421–1424.
    [12] F. Lin and Mina Rais-Zadeh, “A tunable 0.6 GHz - 1.7 GHz bandpass filter with a constant bandwidth using switchable varactor-tuned resonators,” IEEE MTT-S Int. Microwave Symp. Dig.,2015,pp. 1-4.
    [13] Z.-H. Chen and Q.-X. Chu, “Wideband fully tunable bandpass filter based on flexibly multi-mode tuning,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 10, pp.789–791, Oct. 2016.
    [14] C.-F. Chen, “A compact reconfigurable microstrip dual-band filter using varactor-tuned stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 16–18, Jan. 2013.
    [15] G. Chaudhary, Y. Jeong, and J. Lim, “Dual-band bandpass filter with independently tunable center frequencies and bandwidths,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 107–116, Jan. 2013.
    [16] Y.-H. Cheng, H.-S. Peng, and Y.-C. Chiang, “Design of tunable dual-band filter with multiple types of resonators,” in Proc. 45th Eur. Microw. Conf., Paris, France, Sep. 2015, pp. 415–418.
    [17] Z.-H. Chen and Q.-X. Chu, ‘‘Dual-band reconfigurable bandpass filter with independently controlled passbands and constant absolute bandwidths,’’ IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 92–94, Feb. 2016.
    [18] W. Feng, Y. Zhang, and W. Che, “Tunable dual-band filter and diplexer based on folded open loop ring resonators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 9, pp. 1047–1051, Sep. 2017.
    [19] C.-F. Chen, C.-Y. Lin, B.-H. Tseng, and S.-F. Chang, “A compact tunable microstrip diplexer using varactor-tuned dual-mode stub-loaded resonators,” IEEE MTT-S Int. Microw. Symp. Dig., 2014, pp. 1–3.
    [20] T. Yang and G. M. Rebeiz, “A simple and effective method for 1.9-3.4 GHz tunable diplexer with compact size and constant fractional bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 436-449, Feb. 2016.
    [21] T. Yang and G. M. Rebeiz, “A 1.26-3.3 GHz tunable triplexer with compact size and constant bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 10, pp. 786-788, Oct. 2016.
    [22] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7,pp. 1078–1085, Jul. 1997.
    [23] S.-C. Weng, K.-W. Hsu, and W.-H. Tu, “Microstrip bandpass single-pole quadruple-throw switch and independently switchable quadruplexer,” Microw., Antennas Propag., vol. 8, no. 4, pp. 244–254, Mar. 2014.
    [24] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application. New York, NY, USA: Wiley, 2001.
    [25] “M/A COM MA46H120 data sheet,” Lowell, MA, M/A COM.

    QR CODE
    :::