| 研究生: |
吳建均 Chien-Chun Wu |
|---|---|
| 論文名稱: |
應用DCM分析肌張力障礙患者異常腦區連結研究與輔助診斷系統建立 Using DCM to analyze Dystonia patient brain connectivity and establishing supporting diagnosis system |
| 指導教授: |
陳純娟
Chun-Chuan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生醫科學與工程學系 Department of Biomedical Sciences and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 寫字型手部痙攣症 、初級運動皮質區 、前運動皮質區 、事件相關電位 、輔助診斷系統 |
| 外文關鍵詞: | Writer’s cramp, Supporting diagnose system |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌張力不全障礙(Dystonia)為一種自發性的運動障礙疾病,患者在發病時會表現出不正常的肌肉痙攣或不正常的姿勢。當局部性手部肌肉發生肌張力不全障礙時, 稱為寫字型手部痙攣症(Writer’s Cramp)。 臨床上, 因為後天性的肌張力不全障礙患者之主要致病機轉尚未完全被了解,導致診斷只能依賴醫師經驗。因此,本研究研究目的為探討病人與正常人大腦連結的異同,並以此建立一個可以輔助臨床進行寫字型手部痙攣症的診斷系統。
本研究收集研究對象為寫字型手部痙攣症(Writer’s Cramp)患者15名與正常受試者15名進行15分鐘內自行數8秒手腕伸展時的腦波訊號。首先利用EEG資料分析患者腦區事件相關電位是否與正常人有所不同,接著,利用動態因果模型(DCM)分析患者與正常人腦區連結異同,之後進行機器學習邏輯斯迴歸分析確立診斷模型。
研究結果顯示,患者各個運動腦區Beta頻帶強度明顯小於正常人,但Theta頻帶強度卻明顯大於正常人。在大腦功能性連結的部分,我們則發現寫字型手部痙攣症患者共有11條連結與正常人有所不同。其中10條為抑制性變高的連結,說明過度的抑制對患者在進行非特定任務時為相當重要的,其中患側前運動皮質區以及對側感覺運動皮質區分別擁有5條異常的連結為較重要的腦區。輔助診斷系統的部分,我們則討論了時間以及頻帶對診斷系統的影響,我們利用較短的時間且將所有頻帶納入統計,分類方法為邏輯斯迴歸分析便可得到最高的準確率,可達到92%。時間的部分,我們僅用了在執行運動任務當時的腦波資料便可得到高準確率,說明了運動當時的神經網路連結比起運動前更為重要。頻帶的部分,我們則認為納入所有頻帶比起僅加入Alpha以及Beta頻帶擁有更高的準確率,這說明了所有頻帶的交互作用對於診斷是否為肌張力不全障礙患者來說重要。我們也發現theta頻帶對於肌張力不全障礙患者來說也有其重要性,可能是由於肌張力不全障礙患者也會產生痛的感覺導致。此外,根據輔助診斷系統判斷特徵連結也發現,與患側前運動皮質區有關的連結也確實為我們用來鑑別是否為病人相當重要的腦區,與我們統計出來的結果相符。未來我們也可進一步探討寫字型手部痙攣症患者好手壞手有何不同以及找出肌張力不全障礙患者特定的大腦連結模型,讓我們可以對於肌張力不全障礙有更多的了解。
Dystonia is a neurological movement disorder that abnormal contractions of muscles result in the twisting of fixed postures or muscle spasm. Writer’s cramp is described as a particular form of dystonia that affects only a small group of hand muscles during specific tasks.Despite writer's cramp is neurological in origin, there are no clinical tools for diagnosis except the observations by experts.
Given the neurological origin of writer's cramp, the aim of this study was to investigate the neuronal alternations in patients with writer's cramp as compared to normal controls.
30 subjects were recruited for this study (15 Writer’s cramp patients and,15 healthy subjects). They were instructed to do the self-initiated wrist extension repeat task every 8 seconds for 15 mins. During the movement task, 32-channel EEG data (10–20 EEG montage) and 2 channel EMG were measured at a sampling rate of 250 Hz. We studied the event-related potentials and the motor networks using Dynamic Causling Model(DCM) to find the significant differences between groups. Machine learning methods were employed to separate the patients from the controls based on the network features.
The statistical results show that the power of beta oscillations was smaller while that of theta oscillations was greater in dystonia patients when compared to the healthy subjects. Regarding the brain network, we found 11 abnormal connections in patients, of which 10 were inhibitory, indicating over-inhibition is important for patients when they perform nonsymptomic task. Furthermore, 5 abnormal connections engaged ipsilateral premotor cortex(PM) and contralateral sensory motor cortex(SM1) indicate their importance. The best classification accuracy is 92% when we used DCM beta features over the peristimilus time of -500 to 2000 ms. In conclusion, the network alternations seen in patients with dystonia can serve as biomarker features that separate patients from the healthy control.
1. H. A. Jinnah, M.D., Ph.D., Diagnosis & Treatment of Dystonia. Neurologic Clinics, 2015. 33(1): p. 77–100.
2. Hallett, M., Pathophysiology of writer’s cramp. Human Movement Science, 2006. Volume 25(Issues 4–5): p. 454-463.
3. Neumann, W.J., et al., Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain, 2015. 138(Pt 7): p. 1894-906.
4. Hamada, I., M.R. DeLong, and N. Mano, Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. J Neurophysiol, 1990. 64(6): p. 1892-906.
5. Skogseid, I.M., Pallidal deep brain stimulation is effective, and improves quality of life in primary segmental and generalized dystonia. Acta Neurol Scand Suppl, 2008. 188: p. 51-5.
6. Mark Hallett, M., The Neurophysiology of Dystonia. Arch Neurol, 1998. 55(5): p. 601-603.
7. S, F., Concept and classification of dystonia. Adv Neurol, 1988. 50: p. 1-8.
8. Lin, P.T., E.A. Shamim, and M. Hallett, Focal hand dystonia. Practical Neurology, 2006. 6: p. 278-287.
9. Bressman, S.B., Dystonia genotypes, phenotypes, and classification. Advances in neurology, 2004. 94: p. 101.
10. Camargos, S. and F. Cardoso, Understanding dystonia: diagnostic issues
and how to overcome them. Arq Neuropsiquiatr, 2016. 74(11): p. 921-936.
11. Lin, P.T. and M. Hallett, The pathophysiology of focal hand dystonia. Journal of Hand Therapy, 2009. 22(2): p. 109–114.
12. Emoto, H., et al., Photophobia in essential blepharospasm--a positron emission tomographic study. Mov Disord, 2010. 25(4): p. 433-9.
13. Contarino, M.F., et al., Clinical Practice: Evidence-Based Recommendations for the Treatment of Cervical Dystonia with Botulinum Toxin. Front Neurol, 2017. 8: p. 35.
14. Raoofi, S., H. Khorshidi, and M. Najafi, Etiology, Diagnosis and Management of Oromandibular Dystonia: an Update for Stomatologists. J Dent (Shiraz), 2017. 18(2): p. 73-81.
15. Sadnicka, A., et al., Task-specific dystonia: pathophysiology and
management. J Neurol Neurosurg Psychiatry 2016. 0: p. 1–7.
16. Erro, R., et al., Rest and other types of tremor in adult-onset primary dystonia. J Neurol Neurosurg Psychiatry, 2014. 85(9): p. 965-8.
17. Macerollo, A., et al., Diagnostic delay in adult-onset dystonia: data from an Italian movement disorder center. J Clin Neurosci, 2015. 22(3): p. 608-10.
18. Fernandez, H.H., 2015 Update on Parkinson disease. Cleve Clin J Med, 2015. 82(9): p. 563-8.
19. Hermann, W., Morphological and functional imaging in neurological and non-neurological Wilson's patients. Ann N Y Acad Sci, 2014. 1315: p. 24-9.
20. Murase, N., et al., Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer's cramp. Brain, 2005. 128(Pt 1): p. 104-15.
21. Cohen, L.G. and M. Hallett, Hand cramps: clinical features and electromyographic patterns in a focal dystonia. Neurology, 1988. 38(7): p. 1005-12.
22. Levy, L.M. and M. Hallett, Impaired brain GABA in focal dystonia. Ann Neurol, 2002. 51(1): p. 93-101.
23. Ridding, M.C., et al., Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry, 1995. 59(5): p. 493-8.
24. Chen, R., et al., Impaired inhibition in writer's cramp during voluntary muscle activation. Neurology, 1997. 49(4): p. 1054-9.
25. Berardelli, A., et al., The pathophysiology of primary dystonia. Brain, 1998. 121 ( Pt 7): p. 1195-212.
26. Hallett, M., Pathophysiology of dystonia. J Neural Transm Suppl, 2006(70): p. 485-8.
27. Leighton B.N. Hinkley, P., et al., Neuroimaging Characteristics of Patients with
Focal Hand Dystonia. J HAND THER., 2009. 22: p. 125–35.
.
28. Fiorio, M., et al., Temporal processing of visuotactile and tactile stimuli in writer's cramp. Ann Neurol, 2003. 53(5): p. 630-5.
29. Peller, M., et al., The basal ganglia are hyperactive during the discrimination of tactile stimuli in writer's cramp. Brain, 2006. 129(Pt 10): p. 2697-708.
30. Lerner, A., et al., Regional cerebral blood flow correlates of the severity of writer's cramp symptoms. Neuroimage, 2004. 21(3): p. 904-13.
31. Goldman, J.G., Writer's cramp. Toxicon, 2015. 107(Pt A): p. 98-104.
32. Quartarone, A., et al., Abnormal associative plasticity of the human motor cortex in writer's cramp. Brain, 2003. 126(Pt 12): p. 2586-96.
33. Quartarone, A., et al., Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain, 2005. 128(Pt 8): p. 1943-50.
34. Tamura, Y., et al., Impaired intracortical inhibition in the primary somatosensory cortex in focal hand dystonia. Mov Disord, 2008. 23(4): p. 558-65.
35. Beck, S., et al., Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci, 2008. 28(41): p. 10363-9.
36. Delnooz, C.C., et al., Writer's cramp: increased dorsal premotor activity during intended writing. Hum Brain Mapp, 2013. 34(3): p. 613-25.
37. Siebner, H.R., et al., Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology, 1999. 52(3): p. 529-37.
38. Kimberley, T.J., et al., Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects. Restor Neurol Neurosci, 2013. 31(5): p. 533-42.
39. Tseng, Y.-J., et al., Reduced Motor Cortex Deactivation in Individuals Who
Suffer from Writer’s Cramp. PLoS ONE, 2014. 9(5): p. 1-6.
40. Fallon, N., et al., Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur J Pain, 2017.
41. Chen, C., S.J. Kiebel, and K.J. Friston, Dynamic causal modelling of induced responses. Neuroimage, 2008. 41(4): p. 1293-1312.
42. Friston, K.J., Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 1994. 2(1-2): p. 56-78.
43. Friston, K., et al., Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of cerebral blood flow and metabolism, 1993. 13: p. 5-5.
44. Aertsen, A. and H. Preissl, Dynamics of activity and connectivity in physiological neuronal networks. Nonlinear dynamics and neuronal networks, 1991. 2: p. 281-301.
45. Grefkes, C., et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of neurology, 2008. 63(2): p. 236-246.
46. Rehme, A.K., et al., The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral cortex, 2010: p. bhq140.
47. Wang, L.E., et al., Noradrenergic enhancement improves motor network connectivity in stroke patients. Annals of neurology, 2011. 69(2): p. 375-388.
48. Derdikman, D., et al., Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. The Journal of neuroscience, 2003. 23(8): p. 3100-3105.
49. David, O., J.M. Kilner, and K.J. Friston, Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage, 2006. 31(4): p. 1580-1591.
50. Andrew, C. and G. Pfurtscheller, Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalography and clinical neurophysiology, 1996. 98(2): p. 144-148.
51. Chen, C.-C., et al., Nonlinear coupling in the human motor system. The Journal of Neuroscience, 2010. 30(25): p. 8393-8399.
52. Pfurtscheller, G. and F.H.L.d. Silva, Event-related EEG/MEG synchronization and desynchronization: basic
principles. Clinical Neurophysiology, 1999. 110(5): p. 1842-857.
53. Schölkopf, B., et al., New support vector algorithms. Neural computation, 2000. 12(5): p. 1207-1245.
54. Le Cessie, S. and J. Van Houwelingen, Ridge estimators in logistic regression. Applied statistics, 1992: p. 191-201.
55. Quinlan, J.R., C4. 5: programs for machine learning. Vol. 1. 1993: Morgan kaufmann.
56. Quinlan, J.R., Improved use of continuous attributes in C4. 5. arXiv preprint cs/9603103, 1996.
57. John, G.H. and P. Langley. Estimating continuous distributions in Bayesian classifiers. in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. 1995. Morgan Kaufmann Publishers Inc.
58. Lowe, D.G., Distinctive image features from scale-invariant keypoints. International journal of computer vision, 2004. 60(2): p. 91-110.
59. Mikolajczyk, K. and C. Schmid, A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005. 27(10): p. 1615-1630.
60. Bay, H., T. Tuytelaars, and L. Van Gool, Surf: Speeded up robust features, in Computer Vision–ECCV 2006. 2006, Springer. p. 404-417.
61. Hall, M.A. and G. Holmes, Benchmarking attribute selection techniques for discrete class data mining. Knowledge and Data Engineering, IEEE Transactions on, 2003. 15(6): p. 1437-1447.
62. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial intelligence, 1997. 97(1): p. 273-324.
63. Braun, C., et al., Task-specific plasticity of somatosensory cortex in patients
with writer’s cramp. NeuroImage, 2003. 20: p. 1329-1338.
64. Pfurtscheller, G. and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 1999. 110(11): p. 1842-57.
65. Cote, S.L., et al., Contrasting Modulatory Effects from the Dorsal and Ventral Premotor Cortex on Primary Motor Cortex Outputs. J Neurosci, 2017. 37(24): p. 5960-5973.
66. Ruiz, M.H., et al., EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician's dystonia. Neuroimage, 2011. 55(4): p. 1791-803.
67. Sarnthein, J., et al., Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain, 2006. 129(Pt 1): p. 55-64.
68. Ikeda, A., [Human supplementary motor area: a role in voluntary movements and its clinical significance]. Rinsho Shinkeigaku, 2007. 47(11): p. 723-6.
69. Sarah Pirio Richardson, M., et al., Abnormal Dorsal Premotor-Motor Inhibition in Writer’s Cramp. Mov Disord, 2014. 29(6): p. 797–803.