跳到主要內容

簡易檢索 / 詳目顯示

研究生: 藍亦汝
Yi-Ru Lan
論文名稱: 以非結構性網格模式探討三接港對桃園海岸波流場之影響
Influence of LNG sea port on the flow and wave fields in Taoyuan coast based on an unstructured-grid numerical model
指導教授: 黃志誠
Zhi-Cheng Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 水動力模擬近岸流桃園海岸
外文關鍵詞: Delft3D FM, nearshore current, Taoyuan coast
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討第三天然氣接收站對於桃園海岸流場之影響。第三天然氣接收站(簡稱三接港)規劃建置於桃園市大潭工業區沿岸,其設計以棧橋自陸側延伸,連接三接港於離岸海域。新建的結構物因局部遮蔽原先水流與波浪,將使桃園近岸的海流與波浪環境產生改變,從而影響該處的漂沙趨勢及沿岸地形變遷。為了解三接港對近岸波流場的影響,本研究使用二維非結構性網格數值模式Delft3D FM模擬桃園近岸潮波流場受海上結構物影響之變化。研究首要透過與ADCP潮波流儀實測值比較,確立Delft3D FM模擬近岸深度平均波流場之能力,並了解由潮汐、風及波浪應力共同作用下的近岸波流場空間變化;繼而以該具高度重現性的數值模式進行現況模擬以及三接港建置後之情境模擬,環境條件設定夏季、冬季兩種季節,討論不同季節的風浪環境下,三接港建置前後的近岸水動力變異。由模擬結果可知,波高與底床剪應力有相似的變化趨勢,兩者於建港後在波浪受三接港遮蔽處均有下降的情形。三接港港形設計使其與陸側所夾之沿岸海域內的流場、波高、底床剪應力在模擬結果產生空間上的變化:東側棧橋周圍水流因水道收窄而匯集、流速增強,最西南側則因遠離棧橋、位居港形開闊處而在平均流速上稍微減緩。除空間上的變化,左右不對稱的港形亦造成漲退潮時期及夏、冬季節上有不同的流速流向及波高、底床剪應力的模擬差異。


    This study aims to investigate the impact of Guantang liquefied natural gas (LNG) seaport on hydrodynamic at the coastal area in Taoyuan city. The LNG seaport, which is located at offshore area and connected to land by a trestle bridge, is proposed for the Guantang Industrial Area along the coast in Taoyuan. With the new structure on coastal area, the flow and wave fields in adjacent sea may evolve differently and result in change of sediment transport and nearshore morphology. To understand the impact of LNG seaport on nearshore current and wave fields, this study uses an unstructured-grid numerical 2D model (Delft3D FM) to analyze the change of the flow and wave fields. First, the capabilities of Delft3D FM in simulating the depth-averaged flow and wave fields around coastal area is confirmed via comparing with observed data from ADCP. Thus, we can understand the spatial variability of flow and wave fields around the coastal area with the tide, wind and wave. Then, scenario models, including original case (without LNG seaport) and LNG seaport case in both summer and winter season, are set up to discuss the impact caused by LNG seaport. As for model results, both significant wave height and bed shear stress reduce in the sheltered area of LNG seaport. The trumpet-shaped LNG seaport, which has larger opening at western side, results in the spatial variations of velocity, wave height and bed shear stress. For example, current may accelerate in eastern side since the narrow gaps under trestle bridge, and slowdown in western side due to the wide opening. Beside the spatial variations, during different tidal phases or different seasons, the impact resulted from the asymmetric of LNG seaport also manifests itself in various changes of the flow direction or velocity, wave height and bed shear stress.

    摘要 i Abstract ii 謝誌 iii 目次 iv 圖次 vi 表次 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 台灣海峽流場 3 1.2.2 近岸流場與地形變遷 4 1.2.3 數值模式與桃園流場 6 1.3 研究目的 7 1.4 文本架構 8 第二章 研究方法 9 2.1 研究位址 10 2.2 現場測量 10 2.3 模擬規劃 11 2.3.1 模式情境規劃——結構物 11 2.3.2 模式情境規劃——季節邊界條件 12 2.4 資料分析 13 第三章 模式建立 23 3.1 模式簡介 23 3.1.1 水動力模組 24 3.1.2 波浪模組 25 3.2 模式設定 26 3.2.1 模式網格 26 3.2.2 模式參數 27 第四章 結果與討論 34 4.1 模式驗證 34 4.2 近岸流場分布特性 35 4.3 建港前後流場比較 35 4.3.1 夏季模擬 35 4.3.2 冬季模擬 38 4.4 建港前後波高、底床剪應力比較 41 4.4.1 夏季模擬 41 4.4.2 冬季模擬 41 4.5 討論 43 第五章 結論與建議 63 5.1 結論 63 5.2 建議 65 參考文獻 66

    Battjes, J., & Janssen, H. (1978). Energy loss and set-up due to breaking random waves. Proceedings of the 16th International Conference on Coastal Engineering, 1. https://doi.org/10.9753/icce.v16
    Battjes, J. A. (1974). Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves.
    Bertotti, L., & Cavaleri, L. (1995). Accuracy of wind and wave evaluation in coastal regions. In Coastal Engineering 1994 (pp. 57-67).
    Elias, E. P. L., Walstra, D. J. R., Roelvink, J. A., Stive, M. J. F., & Klein, M. D. (2001). Hydrodynamic Validation of Delft3D with Field Measurements at Egmond. In Coastal Engineering 2000 (pp. 2714-2727). https://doi.org/doi:10.1061/40549(276)212
    Hu, C.-K., Chiu, C.-T., Chen, S.-H., Kuo, J.-Y., Jan, S., & Tseng, Y.-H. (2010). Numerical Simulation of Barotropic Tides around Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 21(1). https://doi.org/10.3319/tao.2009.05.25.02(iwnop)
    Hu, J., Kawamura, H., Li, C., Hong, H., & Jiang, Y. (2010). Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66(5), 591-610. https://doi.org/10.1007/s10872-010-0049-1
    Jan, S., Wang, J., Chern, C.-S., & Chao, S.-Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3-4), 249-268.
    Jeffreys, H. (1925). On the formation of water waves by wind. Proceedings of the royal society of London. Series A, containing papers of a mathematical and physical character, 107(742), 189-206.
    Jing-song, G., Xiao-min, H., & Ye-li, Y. (2005). A Diagnostic Analysis of Variations in Volume Transport Through the Taiwan Strait Using Satellite Altimeter Data. Advances in Marine Science.
    Ke, X. (1991). Wind field in the central and southern Taiwan Strait. Minnan-Taiwan Bank Fishing Ground Upwelling Ecosystem Study, 113-120.
    Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the Existence of a Fully Developed Wind-Sea Spectrum. Journal of Physical Oceanography, 14(8), 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:Oteoaf>2.0.Co;2
    Lee, J.-W., Lee, H., Lee, H.-S., & Jeon, M.-S. (2004). Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay. Proceedings of the Korean Institute of Navigation and Port Research Conference,
    Liew, K.-J. (2018). Numerical simulation of nearshore current along Taoyuan coast.
    Longuet-Higgins, M. S., & Stewart, R. W. (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10, 529-549.
    Longuet-Higgins, M. S., & Stewart, R. W. (1962). Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. Journal of Fluid Mechanics, 13(4), 481-504. https://doi.org/10.1017/S0022112062000877
    Madsen, O. S., Poon, Y.-K., & Graber, H. C. (1988). Spectral Wave Attenuation by Bottom Friction: Theory. Coastal Engineering Proceedings, 1(21). https://doi.org/10.9753/icce.v21.34
    Nielsen, P. (2009). Coastal and estuarine processes (Vol. 29). World Scientific Publishing Company.
    Roelvink, J. A., & Stive, M. J. F. (1989). Bar-generating cross-shore flow mechanisms on a beach. Journal of Geophysical Research, 94(C4). https://doi.org/10.1029/JC094iC04p04785
    Song, H., Kuang, C., Gu, J., Zou, Q., Liang, H., Sun, X., & Ma, Z. (2020). Nonlinear tide-surge-wave interaction at a shallow coast with large scale sequential harbor constructions. Estuarine, Coastal and Shelf Science, 233. https://doi.org/10.1016/j.ecss.2019.106543
    Soulsby, R. (1997). Dynamics of marine sands.
    Tsoukala, V. K., Katsardi, V., Ηadjibiros, K., & Moutzouris, C. I. (2015). Beach Erosion and Consequential Impacts Due to the Presence of Harbours in Sandy Beaches in Greece and Cyprus. Environmental Processes, 2(S1), 55-71. https://doi.org/10.1007/s40710-015-0096-0
    Wilcock, P. R. (1996). Estimating Local Bed Shear Stress from Velocity Observations. Water Resources Research, 32(11), 3361-3366. https://doi.org/10.1029/96wr02277
    Willmott. (1981).
    Wyrtki, K. (1961). Physical oceanography of the Southeast Asian waters (Vol. 2). University of California, Scripps Institution of Oceanography.
    Yelland, M., Moat, B., Taylor, P. K., Pascal, R., Hutchings, J., & Cornell, V. C. (1998). Wind Stress Measurements from the Open Ocean Corrected for Airflow Distortion by the Ship. Journal of Physical Oceanography, 28, 1511-1526. https://doi.org/10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2
    林伯謙. (2018). 桃園海岸進岸流四季的變化. (碩士).
    劉靜榆. (2012). 搶救臺灣藻礁: 消失中的生命聚寶盆. 行政院農業委員會特有生物研究保育中心.

    QR CODE
    :::