| 研究生: |
林宜潔 I-Chieh Lin |
|---|---|
| 論文名稱: |
萊斯納-諾德斯特洛姆黑洞下的成對產生 Spontaneous Pair Production in Reissner-Nordstrӧm Black Holes |
| 指導教授: |
陳江梅
Chiang-Mei Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 霍金輻射 、黑洞 、成對產生 |
| 外文關鍵詞: | Schwinger mechanism, black hole, Hawking radiation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究在帶電的萊斯納-諾德斯特洛姆黑洞幾何背景時空下自發性的粒子成對產生。在這種背景下的粒子成對生主要藉由與重力場作用``Hawking radiation'',或是與電磁場交互作用``Schwinger mechanism''產生。背景的電場和幾何間存在交互作用,因此這兩者對於粒子成對產生的效應也是密不可分的。在極限或接近極限兩種情況,RN黑洞背景中成對產生率的解析型式可藉由加入兩種邊界條件得出。所考慮的這個系統等價於在AdS2×S2背景幾何中加入一個測試用的帶電純量場。已知在極限黑洞下不會發生Hawking radiation,所以在這種背景下的粒子成對產生是藉由Schwinger mechanism來達成。這個黑洞因此損失了電荷,而從極限黑洞變成接近極限的黑洞,這個時候Hawking radiation和Schwinger mechanism將會共同主導粒子產生的機制。我們發現在偏離但接近極限的黑洞背景下的粒子產生率比在極限黑洞下還低。這是因為此時黑洞的表面重力增加在加強Hawking radiation之外,也會抵消電場的排斥力效應,造成Schwinger pair production被大幅的抑制。這兩種粒子成對產生機制無法單純由引用本文所介紹的邊界條件來作區別。
The spontaneous pair production in a charged geometrical background is studied. In this background, pair productions are driven by either gravity (Hawking radiation) or electromagnetic force (Schwinger mechanism). The electric field and geometry are coupled together to implement particle productions. The analytically obtained pair production rate in a (near) extremal Reissner-Nordstr¨om (RN) black hole is done by applying two equivalent boundary conditions. The present system is equivalent to a charged scalar field probed into a AdS 2 × S 2 geometry. It is known that in the extremal RN geometry no Hawking radiation will happen, so the pair production is totally caused by Schwinger mechanism. After the black hole losses its charge via Schwinger mechanism, the extremal black hole becomes near-extremal, and Hawking radiation together with Schwinger pair production are responsible for particle pro-
duction rate now. It is shown that the particle production rate in the near-extremal RN black holes are lower than that in the extremal RN black holes. This is because
the increased surface gravity which enhance Hawking radiation will compete the compelling electric force, and lower the Schwinger pair production rate. Since the increase
in Hawking pair production can not compensate the decrease in Schwinger pair production, the particle production rate in the near-extremal RN geometry is lower than the extremal case. Therefore, Hawking radiation and Schwinger pair production are indistinguishable by simply applying these boundary conditions.
[1] J. D. Bekenstein, “Extraction of Energy and Charge from a Black Hole”, Phys. Rev. D 7 (1973) 949.
[2] S. W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys. 43 (1975) 199.
[3] B. Carter, “Charge and particle conservation in black hole decay,” Phys. Rev.
Lett. 33, 558 (1974).
[4] G. W. Gibbons, “Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes” Commun. math. Phys. 44 (1975) 245.
[5] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231.
[6] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253.
[7] M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT Correspondence,” [arXiv:0809.4266v1 [hep-th]].
[8] C.-M. Chen, Y.-M. Huang, J.-R. Sun, M.-F. Wu, and S.-J. Zou, “ Twofold Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D. 82 (2010) 066004 [arXiv:1006.4097v2 [hep-th]].
[9] C. Gabriel, “Spontaneous loss of charge of the Reissner-Nordstrom black hole,”Phys. Rev. D 63 (2001) 024010 [arXiv:gr-qc/0010103].
[10] W. A. Hiscock, and L. D. Weems, “Evolution of charged evaporating black holes,”phys. Rev. D 41 (1990) 4.
[11] M. K. Parikh and F. Wilczek, “Hawking Radiation as Tunneling”, Phys. Rev. Lett. 85 (2000) 5042 [arXiv:9907001 [hep-th]].
[12] M. K. Parikh, “Energy Conservation and Hawking Radiation”, hep-th/0402166.
[13] K. D. Kokkotas and B. G. Schmidt, “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Rel. 2 (1999) 2 [arXiv:9909058v1[gr-qc]].
[14] R. A. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory”, Rev. Mod. Phys. 83 (2011) 793 [arX-ive:1102.4014v2].
[15] S. P. Kim and D. N. Page, “Schwinger Pair Production in dS(2) and AdS(2),”
Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555 [hep-th]].
[16] C.-M. Chen, Y.-M. Huang and S.-J. Zou, “Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes,” JHEP 1003 (2010) 123 [arXiv:1001.2833 [hep-th]].
[17] C.-M. Chen and J.-R. Sun, “Hidden Conformal Symmetry of the Reissner-Nordstrøm Black Holes,” JHEP 1008 (2010) 034 [arXiv:1004.3963 [hep-th]].
[18] C.-M. Chen and J.-R. Sun, “Holographic Dual of the Reissner-Nordstr¨om Black Hole,” J. Phys. Conf. Ser. 330 (2011) 012009 [arXiv:1106.4407 [hep-th]].