| 研究生: |
張宗達 Tsung-Ta Chang |
|---|---|
| 論文名稱: |
磨料流動加工對微細流道精修表面研究 |
| 指導教授: |
黃豐元
Fuang-Yuan Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 表面粗糙度 、線切割放電加工 、微細流道 、表面精修 、磨料流動加工 |
| 外文關鍵詞: | Micro-channel, surface roughness, Abrasive flow machining (AFM), surface finishing, Wire electrical discharge machining (WEDM) |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本實驗之研究目的主要是開發一種可隨加工時間而自動調整其流動性與黏滯性的自調性磨料,並利用磨料流動加工法(Abrasive Flow Machining,AFM)對複雜形狀的微細流道表面進行修整之實驗探討。將由實驗中探討磨料流動加工的製程參數,如磨粒粒度、磨料濃度、擠製壓力與加工時間,對磨料黏滯性及表面粗糙度的影響。同時,亦觀察微細流道之外觀上形狀精度經磨料流動加工修整後的改善效果。
由實驗結果得知,初始磨料具有較高黏滯性。尤其在選用較粗粒徑的磨粒與較高濃度的磨料,並於使用較高擠製壓力的加工條件下,對流道表面粗糙度的改善最為明顯。在隨著加工時間的增加,磨料會呈現極佳的流動性,有利於磨削速度,極適合精修微細流道。能有效地改善流道表面的粗糙度,以獲得高品質的微細流道元件。
Abstract
This study developed a self-modulating abrasive whose viscosity and fluidity can be adjusted processing period. The complex micro channel was fabricated on the stainless steel (SUS304) by using Wire electrical discharge machining (WEDM) and an experiment of employing Abrasive Flow Machining (AFM) was conducted to evaluate the characteristics of various levels of roughness and finishing of the micro channel surface. In the experiment, the parameters of affecting AFM machining including abrasive particle size, concentration, extrusion pressure and machining time were selected to verify the machining quality of the micro channel.
Experimental results reveal that at high viscosity and concentration the surface roughness of abrasive with a coarse particle size is lower than that of abrasive with a fine particle size. Furthermore, the machining quality of the micro channel improves as the extrusion pressure and the machining time increase because there is an increase in the fluidity of the abrasive. Therefore, the self-modulating abrasive-laden media can be used to determine and influence the surface finishing and the precision of the shapes. So we can find the most efficient working conditions to promote industries to consult.
參考文獻
[1] B.H.Yan, Y.C.Lin,and F.Y.Huang, 2002, “ Surface modification of Al-Zn-Mg alloy by combined electrical discharge machining with ball burnish machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No.8, pp. 925-934.
[2] A.C.Wang, B.H.Yan, X.T.Lee and F.Y.Huang, 2002, “Use of micro ultrasonic vibration lapping to enhance the precision of micro-holes drilled by micro electro-discharge machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No. 8, pp. 915-923.
[3] T.R. Loveless, R.E. Williams, K.P. Rajurkar, 1994, “A study of the effects of Abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology 47, pp. 133-151.
[4] A.C.Wang, B.H.Yan, X.T.Lee, F.Y.Huang, 2002, “Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No. 8, pp. 915-923.
[5] http://www.extrudehone.com/
[6] V.K. Jain, 1999, “Simulation of Surface Generated in Abrasive Flow Machining(AFM) Process”, Robotics and Computer Integrated Manufacturing 15, pp. 403-412.
[7] B. Bhushan, 2002, “Introduction to tribology”, by John Wiley and Sons, New York.
[8] V.K. Jain, R.K. Jain, 2001, “Specific energy and temperature determination in abrasive flow machining process”, International Journal of Machine Tools and Manufacture 41, pp. 1689-1704.
[9] Rajendra Kumar Jain, Vijay Kumar Jain, “Simulation of surface generated in abrasive flow machining process”, Robotics and Computer Integrated Manufacture, Vol.15, pp. 403-412.
[10] V.K. Jain, S.G. Adsul, 1999, “Experimental investigations into abrasive flow machining (AFM)”, International Journal of Machine Tools & Manufacture 40, pp. 1003-1021, 2000.
[11] V.K. Jain, C. Ranganatha, and K. Muralidhar, 2001, “Evaluation of rheological properties of medium for AFM process”, Machining Science and Technology, Vol. 5(2), pp. 151-170.
[12] R.K. Jain, V.K. Jain, 2003, “Finite element simulation of abrasive flow machining”, Proc. Instn Mech. Engrs, Vol. 217.
[13] V.K. Gorana, V.K. Jain, G.K. Lal, 2004, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tool & Manufacture, Vo l. 44, pp. 201-211, June.
[14] Kimberly L. Petri, Richard E. Billo, and Bopaya Bidanda, 1998, “A neural Network Process Model for abrasive flow machining operations”, Journal of Manufacturing Systems, Vol. 17, No. 1.
[15] R.K. Jain and V.K. Jain, P. K. Kalra, 1999, “Modeling of abrasive flow machining process: a neural network approach”, Wear, Vol. 231, pp. 242-248.
[16] Rajendra Kumar Jain, Vijay Kumar Jain, 2000, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of materials processing technology, Vol. 108, pp. 62-67.
[17] Sehijpal Singh, H.S. Shan, 2002, “Development of magneto abrasive flow machining process”, International Journal of Machine Tool & Manufacture, Vol. 42, pp. 953-959.
[18] Sehijpal Singh, H.S.Shan, Pradeep Kumar, 2002, “Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method”, Quality and Reliability engineering international, Vol. 18, pp. 273-283.
[19] V.K. Jain, 2004, “Esign and development of the magnetorheological abrasive flow finishing”, International Journal of Machine Tool & Manufacture, Vol. 44, pp. 1019-1029.
[20] 黃忠良, 精密陶瓷加工(硬脆材料的機械加工), 復漢出版社, 民國87年6月。
[21] http://www.chaoshun.com.tw/