跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳觀宇
Kuan-Yu Chen
論文名稱: 高光效 LED 遠距離投射燈之研究
Study of High-Performance LED Projection Lamp for Long-distance Projection
指導教授: 孫慶成博士
Dr. Ching-Cherng Sun
楊宗勳博士
Dr. Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: pcW-LEDs光展量等效光通量密度投射光形二階光學設計照射距離
外文關鍵詞: pcW-LEDs, étendue, exitance, projection, secondary optical design, projection distance
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們先以一般市售高功率白光 LED 為光源,分析光源之光學特性,其中包含光源的光展量計算與等效光通量密度分析,並從中評價出最適合遠距離投射光形的照明之光源。此外,本論文提出一種遠距離投射燈具之設計,並搭配二階光學設計與合適的 LED 光源,使該投射光形之光學模組,達到高照射距離的效果。設計結果的模擬評估單一光學模組在驅動功率為5.2 W的條件下,照射角度的半高全寬為1.33°,光學效率為77 % 與光學有效利用率為45.9 %,投射距離可達 1055.5 m。最後以實驗確認設計結果之光學表現後,將光學模組以3x3陣列方式排列製作燈具,成功完成一盞在驅動功率為41.8 W下,其照射距離高達3.1 km的投射燈具。此投射燈具有輕量、節能與成本低廉的優點,預期可應用在邊防、船用或高樓裝飾等照明用途。


    In this thesis, we had successfully analyzed optical performance of commercial high-power pcW-LEDs. The analysis included the étendue and exitance of the light sources, and these properties is an indicator for the application of long-distance projection. In addition, we proposed a long-distance projection lamp design with secondary optical components, as well as a proper LED light source to build up an optical module with high optical performance. Under driving power 5.2 watts, the optical module behaves long-distance project, where FWHM of divergence angle were 1.33 degrees, optical efficiency was 77 %, optical utilization factor was 45.9%, and the projection distance was 1055.5 m. Finally, after confirming the design results by experiment, a luminaire with 3×3 modules to produce a projection of distance as long as 3.1 km with driving power of 41.8 watts. The luminaire has several advantages, such as light weight, energy saving and low cost, and is expected to be used in special lighting applications such as border, marine or decoration.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 5 1-3 論文大綱 8 第二章 基礎原理 9 2-1 基本原理 9 2-1-1 反射定律 10 2-1-2 折射定律 11 2-1-3 光線追跡 12 2-2 光度學 16 2-2-1 視效函數 16 2-2-2 光度計量與單位 18 2-3 光展量 22 2-4 中場擬合法 25 第三章 遠距投射照明之設計 27 3-1 投射光形之照明指標 28 3-2 目標與初階光學設計 29 3-3 LED 光源特性分析與探討 31 3-3-1 LED 光展量計算 34 3-3-2 LED 光通量密度之分析 40 3-4 光源評估結果與光源模型的建立 44 3-5 遠距離投射照明設計與結果 51 3-6 討論 55 第四章 遠距投射照明之光學特性驗證 56 4-1 反射杯驗證 56 4-2 透鏡驗證 66 4-3 光學模組驗證 73 4-4 3x3陣列燈具驗證 76 4-5 討論 81 第五章 結論 83 參考文獻 85 中英文名詞對照表 89

    [1] Wikipedia website, https://de.wikipedia.org/wiki/Heinrich_Göbel.
    [2] M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
    [3] R. Kane and H. Sell, Revolution in lamps: a chronicle of 50 years of progress (The Fairmont Press, 2001).
    [4] J. Kaufman, IES Lighting Handbook 1981 Reference Volume (Illuminating Engineering Society of North America, New York, 1981).
    [5] B. W. D'Andrade and S. R. Forrest. “White organic light‐emitting devices for solid‐state lighting,” Adv. Mater. 16, 1585-1595 (2004).
    [6] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
    [7] Philips website, http://www.lighting.philips.com/us_en/connect/professional/hid.wpd.
    [8] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L.Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
    [9] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
    [10] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
    [11] N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
    [12] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, 1997).
    [13] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US5998925 (1999).
    [14] R. Mueller-Mach, G. Mueller, and M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor- converted white light emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
    [15] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US6685852 B2 (2004).
    [16] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
    [17] L. Vriens, G. Acket, and C. Ronda, “UV/blue LED–phosphor device with efficient conversion of UV/blues light to visible light,” United States Patent, US5813753 B2 (1998).
    [18] S. C. Allen and A. J. Steckl, “ELiXIR¬¬¬ solid-state luminaire with enhanced light extraction by internal reflection,” J. Display Technol. 3, 155-159 (2007).
    [19] S. Jeon, P. Eun, Y. H. Park, Choi, J. C. Park, H. Lee, Gwang Chul, Kim, and T. Whan “White-light generation through ultraviolet-emitting diode and white-emitting phosphor,” Appl. Phys. Lett. 85, 3696-3698 (2004).
    [20] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US6686676 B2 (2004).
    [21] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
    [22] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US6507159 B2 (2003).
    [23] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
    [24] C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20, A75–A84 (2012).
    [25] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
    [26] 孫慶成,LED 的效率極限與照明光學設計的極致,LED固態照明研討會論文集,中華民國九十八年。
    [27] Cree News, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier.
    [28] 空中玫瑰探照燈, https://hengyilight.cn.made-in-china.com.
    [29] 空中玫瑰探照燈, https://gzhzglighting.cn.china.cn.
    [30] 500W LED 港口燈, http://www.fengled.com.
    [31] 360W 船用探照燈, http://yarui268.dzsc.com.
    [32] H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [33] R. A. Hicks, “Designing a mirror to realize a given projection,” J. Opt. Soc. Am. A 22, 323–330 (2005).
    [34] L. L. Doskolovich and S. I. Kharitonov, “Calculating the surface shape of mirrors for shaping an image in the form of a line,” J. Opt. Technol. 72, 318–321 (2005).
    [35] B. Parkyn and D. Pelka, “Free-form illumination lens designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808-7 (2006).
    [36] L. L. Doskolovich and M. A. Moiseev, “Calculations for refracting optical elements for forming directional patterns in the form of a rectangle,” J. Opt. Technol. 76, 430–434 (2009).
    [37] J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
    [38] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [39] M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19, A225-A233 (2011).
    [40] W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
    [41] F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Optics 47, 957-966 (2008).
    [42] J. C. Chaves, W. Falicoff, B. Parkyn, P. Benítez, J. C. Miñano, “Increased brightness by light recirculation through an LED source,” Proc. SPIE 7059, 705902 (2008).
    [43] H. J. Cornelissen, H. Ma, C. Ho, M. Li, and C. Mu, “Compact collimators for high brightness blue LEDs using dielectric multilayers,” Proc. SPIE 8123, 81230J (2011).
    [44] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [45] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572–7577 (2007).
    [46] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, ” Analysis of the far-field region of LEDs,” Opt. Express 17, 13918-13927 (2009).
    [47] E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).
    [48] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
    [49] W. T. Welford, High Collection Nonimaging Optics, (Academic, SanDiego, Calif, 1989).
    [50] R. Winston, Nonimaging Optics, (Academic, SanDiego, Calif, 2005).
    [51] CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86 (1988b).
    [52] H. Ries, N. Shatz, J. Bortz, and W. Spirkl, “Performance limitations of rotationally symmetric nonimaging devices,” J. Opt. Soc. Am. A 14, 2855-2862. (1997).
    [53] 孫慶成,光電科技概論,全華圖書公司。
    [54] Cree Inc., http://www.cree.com/LED-Components-and-Modules/Products.
    [55] Osram Inc., http://www.osram-os.com/osram_os/en/products.
    [56] 蔡直佑,高光效多功能投射光形之研究,國立中央大學光電所博士論文,中華民國一百零四年。
    [57] BRO ASAP, http://www.breault.com/software/asap-features.
    [58] Flashlight Basic Performance Standard, Approved as an American National Standard, (2009).

    QR CODE
    :::