| 研究生: |
許閔雅 Min-Ya Hsu |
|---|---|
| 論文名稱: |
Protonation-Induced Control of Binding Strength, Orientation and Selectivity in Multiple Hydrogen-Bonded Systems. |
| 指導教授: |
趙奕姼
Ito Chao 楊吉水 Jye-Shane Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 多重氫鍵 、超分子化學 、自我組裝 、主客分子 、分子辨識 |
| 外文關鍵詞: | self-assembly, supramolecular chemistry, multiply hydrogen-bonded complexes, host-guest complexes and molecular recognition |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫鍵是一個非常重要的非共價鍵之作用力,因為其具有方向性和適當的強度,所以在自然界、超分子化學、自我組裝、主客分子和分子辨識中被廣泛的使用。如果我們可以控制多重氫鍵的鍵結能力,就可以間接改變超分子的型態。
我們設計一個三元件系統—包含一反應中心、共軛架橋和可以形成多重氫鍵的鍵結中心,藉由在反應中心進行質子化反應之方式,將訊號經由共軛架橋傳到鍵結中心(主分子),間接改變與客分子間的氫鍵鍵結能力。我們成功地藉由質子化方式控制多重氫鍵的鍵結強度、鍵結方式和鍵結選擇性。在複合物為AAA・・・DDD(A表氫鍵之質子受基,D表質子供給基;AAA表示分子內有三個質子受基、DDD表示分子內有三個質子供給基,餘類推)之系統中,我們藉由質子化方式使氫鍵鍵結強度強烈減少;在複合物為AAA・・・DDD和ADA・・・DAD之系統中,我們藉由質子化方式使鍵結方式改變;在複合物為ADAD・・・DADA之系統中,我們藉由質子化方式讓複合物有專一的選擇性。透過以上系統之研究,我們也歸納出一些分子設計之原則,以利多重氫鍵系統之控制。
Hydrogen bonding is one of the most important non-covalent interactions found in nature, supramolecular chemistry, self-assembly, host-guest complexes and molecular recognition, and is widely used in molecular design because hydrogen bonds are directional and moderately strong. If we can control the binding affinity in multiply hydrogen-bonded complexes, we can change the morphology of supramolecules.
We have studied a three-component system consisting of a reaction center, a conjugated bridge and a binding center with multiple hydrogen-bonding sites. Protonation of the reaction center induces intramolecular charge transfer to the binding center via the conjugated bridge, altering the ability of the three-component system to bind with a partner. We have succeeded in controlling the binding strength, orientation and selectivity in various systems by protonation. The binding energy decreases when the AAA system is protonated (A stands for a proton acceptor in a hydrogen-bonded pair and D stands for a proton donor. An AAA system means the binding center has three acceptor sites). The binding orientation changes when the ADA・・・DAD and AAA・・・DDD systems are protonated. The binding selectivity can be optimized by protonation in the DADA system. We also provides some ideas for chemists to design molecules whose hydrogen-bonding sites can be controlled.
[1].(a) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: New York, 1991. (b) Pauling, L. The Nature of the Chemical Bond; Cornell Univ Press: San Francisca, 1960.
[2].(a) Balzani V.; Cola L. D. Supramolecular Chemistry; Kluwer Academic Publishers: Boston, 1992. (b) Weber E. Supramolecular Chemistry Ι Directed Synthesis and Molecular Recognition; Springer-Verlag: Berlin, 1993. (c) Comprehensive Supramolecular Chemistry, Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtlw, F., Eds.; Elsevier Science: Qxford, 1996. (d) Schneider, H.-J.; Tatsimirsky, A. Principles and Methods in Supramolecular Chemistry; Wiley: New Park, 2000. (e) Bosman, A. W.; Brunsveld, L.; Folmer, B. J. B.; Sijbesma, R. P.; Meijer, E. W. Macromol. Symp. 2003, 201, 143.
[3].(a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature, 1962, 195, 68. (b) Rebek, J.; Nemeth, D. J. Am. Chem. Soc. 1985, 107, 6738. (c) Zimmerman, S. C.; Wu, W. J. Am. Chem. Soc. 1989, 111, 4994. (d) Ogoshi, H.; Hatakeyama, H.; Kotani, J.; Kawashima, A.; Kuroda, Y. J. Am. Chem. Soc. 1991, 113, 8181. (e) Kelly-Rowley, A. M.; Cabell, L. A.; Anslyn, E. V. J. Am. Chem. Soc. 1991, 113, 9687.
[4].(a) Fluorescent Chemosensor For Ion and Molecule Recognition; Czarnik, A. W., Ed.; ACS: Washington, DC, 1992. (b) Kolbel, M.; Menger, F. M. Langmuir 2001, 17, 4490. (c) Ren, J.; Qu, X.; Dattagupta, N.; Chaires, J. B. J. Am. Chem. Soc. 2001, 123, 6742. (d) Banerjee, I. A.; Yu, L.; Matsui, H. J. Am. Chem. Soc. 2003, 125, 9542. (e) Chou, H.-C.; Hsu, C.-H.; Cheng, Y.-M.; Cheng, C.-C.; Liu, H.-W.; Pu, S.-C.; Chou, P.-T. J. Am. Chem. Soc. 2004, 126, 1650.
[5].(a) Kotera, M.; Lehn, J.-M.; Vigneron, J.-P. J. Chem. Soc., Chem. Commun. 1994, 197. (b) Lindoy, L. F.; Atkinson, I. M. Self-Assembly in Supramolecular Systems; The Royal Society of Chemistry: Cambridge, 2000. (b) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem Int. Ed. 2001, 40, 2382; Angew. Chem. 2001, 113, 2446.
[6].Jeffrey, G. A. An introduction to hydrogen bonding, Oxford University Press: Oxford, 1997.
[7].Leach, A. R. Molecular Modelling Principles and Applications, Prentice Hall: London, 2001.
[8].Zeng, H.; Miller, R. S.; Flowers, R. A.; Gong, B. J. Am. Chem. Soc. 2000, 122, 2635.
[9].(a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008. (b) Pranata, J.; Wierschke, S. G.; Jorgensen, W. L.; J. Am. Chem. Soc. 1991, 113, 2810.
[10].Sartorius, J.; Schneider, H. -J. Chem. Eur. J. 1996, 2, 1446.
[11](c) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001, 30, 83.
[12].Kerckhoffs, J. M. C. A.; van Leeuwen, F. W. B.; Spek, A. L.; Kooijman, H.; Calama, M. C.; Reinhoudt, D. N. Angew. Chem Int. Ed. 2003, 42, 5717.
[13].Lehn, J.-M.; Mascal, M.; DeCian, A.; Fischer, J. J. Chem. Soc., Perkin Trans. 2 1992, 461.
[14].Ma, Y.; Kolotuchin, S. V.; Zimmerman, S. C. J. Am. Chem. Soc. 2002, 124, 13757.
[15].Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature, 2000, 407, 167.
[16].Söntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 7487.
[17].Stone, A. J. The Theory of Intermolecular Forces, Clarendon: Oxford, 1996, pp 115-119.
[18].Cooke, G.; Rotello, V. M. Chem. Soc. Rev. 2002, 31, 275.
[19].(a) Chao, I.; Hwang, T. -S. Angew. Chem. 2001, 113, 2775; Angew. Chem. Int. Ed. 2001, 40, 2703. (b) Hwang, T. -S.; Juan, N.; Chen, H.-Y.; Chen, C.-C.; Lo, S.-J.; Chao, I. Chem. Eur. J. 2004, 10, 1616. (c) Lo, S.-J.; Li, W.-S.; Chen, H.-Y.; Chao, I. Chem. Eur. J. 2005, in press.
[20].(a) Breinlinger, E.; Niemz, A.; Rotello, V. M. J. Am. Chem. Soc. 1995, 117, 5379. (b) Ge, Y.; Lilienthal, R. R.; Smith, D. K. J. Am. Chem. Soc.1996, 118, 3976. (c) Kajiki, T.; Moriya, H.; Kondo, S.; Nabeshima, T.; Yano, Y. Chem.Commun. 1998, 2727. (d) Kaifer, A. E. Acc. Chem. Res. 1999, 32, 62. (e) Ge, Y.; Miller, L.; Ouimet, T.; Smith, D. K. J. Org. Chem. 2000, 65, 8831. (f) Tucker, J. H. R.; Collinson, S. Chem. Soc. Rev. 2002, 31, 147.
[21].(a) Inouye, M.; Konishi, T.; Isagawa, K. J. Am. Chem. Soc. 1993, 115, 8091. (b) Al-Saya, M. H.; Branda, N. R. Angew. Chem., Int. Ed. 2000, 39, 945.
[22].(a) Chen, C. T.; Siegel, J. S. J. Am. Chem. Soc. 1994, 116, 5959. (b) Deans, R.; Cooke, G.; Rotello, V. M. J. Org. Chem.1997, 62, 836. (c) Deans, R.; Cuello, A. O.; Galow, T. H.; Ober, M.; Rotello, V. M. J. Chem. Soc.,Perkin Trans.2 2000, 1309.
[23].Söntjens, S. H. M.; Meijer, J. T.; Kooijman, H.; Spek, A. L.; van Genderen, M. H. P.; Sijbesma, R. P.; Meijer, E. W. Org. Lett. 2001, 24, 3881.
[24].Sijbesma, R. P.; Meijer, E. W. Chem.Commun. 2003, 5.
[25].(a) Murray, T. J.; Zimmerman, S. C. J. Am. Chem. Soc. 1992, 57, 4010. (b) Zimmerman, S. C.; Murray, T. J. Philos. Trans. R. Soc. London, Ser. A 1993, 345:1674, 49.
[26].(a) Lee, C.; Fitzgerald, G.; Planas, M.; Novoa, J. J. J. Phys. Chem. 1996, 100, 7398. (b) Lee, C.; Sosa, C.; Planas, M.; Novoa, J. J. J. Chem. Phys. 1996, 104, 7081. (c) Gonzalez, L.; Mo, O.; Yañez, M.; Elguero, J. J. Mol. Struct. 1996, 371, 1. (d) Alfredsson, M.; Ojanäe, L.; Hermansson, K. G. Int. J. Quantum Chem. 1996, 60, 767. (e) Dkhissi, A.; Adamowicz, L.; Maes, G. J. Phys. Chem. A 2000, 104, 2112. (f) Rak, J.; Skurski, P.; Simons, J.; Gutowski, M. J. Am. Chem. Soc. 2001, 123, 11695. (g) Dabkowska, I.; Rak, J.; Gutowski, M. J. Phys. Chem. A 2002, 106, 7423.
[27].Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. Our BSSE calculation procedure is the same as in: Turi, L.; Dannenberg, J. J. J. Phys. Chem. 1993, 97, 7899.
[28].Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M .A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Morokuma, P. Y. Ayala. K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Challacombe, A. Nanayakkara. M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision A. 1, Gaussian, Inc., Pittsburgh PA, 2003.
[29].Poplitzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press: New Park, 1981.
[30].Murray, J. S.; Sen. K. Molecular Eletrostatic Potentials (Concepts and Applications), Amsterdam; New York: Elsevier, 1996.
[31].Pauling, L. The Nature of the Vhemical Bond, 3rd ed., Cornell University, Press, Ithaca: New York, 1960, pp.257-264
[32].Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121, 3414.
[33].Zhan, C.-G.; Nichols, J. A.; Dixon, A. A. J. Phys. Chem. A 2003, 107, 4184.
[34]. Bordner, A. J.; Cavasotto, C. N.; Abagyan, R. A. J. Phys. Chem. B. 2003, 107, 9601.