| 研究生: |
趙蓓瑩 Pei-ying Chao |
|---|---|
| 論文名稱: |
具乙烷官能基和硫醇官能基之中孔洞材料的合成、鑑定與應用 Direct Synthesis, Characterization, and Application of Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with Mercaptopropyl Groups |
| 指導教授: |
高憲明
Hsien-ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 中孔洞 、硫醇官能基 、乙烷官能基 |
| 外文關鍵詞: | Ethylane-bridge, Mesoporous, Mercaptopropyl Group |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是使用中性離子界面活性劑 (C2H4O)10C18H38O (Brij-76) 做為模板,將具有乙烷官能基之 PMOs 材料 1,2-bis-(trimethoxysilyl) ethane (BTME) 與具硫醇官能基之 3-mercaptopropyltrimethoxysilane (MPTMS) 作為共同矽源,並在酸性條件下以共聚合的方式來進行合成。除了可以得到規則排列的六角柱狀中孔洞材料外,也可將硫醇官能基的莫耳比例提升至 75%。
另外在重金屬的檢測及定量在區域的環境監控、污水管理,甚至生物演變在近年來雖然利用很多不同儀器的技術進行檢測,但在此將利用硫醇官能基對汞金屬離子進行吸附,並以 ICP-MS 鑑定之。
再者,利用此含硫醇官能基之中孔洞材料做為基板,來對金離子進行吸附後,將其在孔道內還原成大小約為 4 ~ 9 奈米之金奈米顆粒。
最後,利用雙氧水、硝酸做為氧化劑,以後修飾法及一步合成法來將硫醇官能基氧化為磺酸官能基。除了一般氧化方法外,也發現也許可在不需要雙氧水的形況下,利用銅金屬將硫醇官能基轉換為磺酸官能基。
Ethane-bridged periodic mesoporous organosilicas (PMOs) functionalized with pendant thiol groups have been synthesized via co-condensation of 1,2-bis-(trimethoxysilyl) ethane ((CH3O)3Si-CH2CH2-Si(OCH3)3, BTME) and 3-mercaptopropyltrimethoxysilane ((MeO)3SiCH2CH2CH2SH, MPTMS) using nonionic oligomeric polymer surfactant (C2H4O)10C18H38O (Brij-76) as the template. The materials thus obtained exhibited ordered and uniformed mesopores up to 75 mol % of MPTMS in the initial mixture.
Second, the detection and quantification of heavy metal ions are important in plethora of areas such as environmental monitoring, waste water management, developmental biology, and clinical toxicology. Now, we used ICP-MS as a characterization tools to obtain evidence for the mercury metal ions adsorption.
Third, Gold (Au) nanoparticles of sizes in the range of 4–9 nm dispersed on ordered mesoporous silica were prepared via a one-pot synthesis and post synthesis route in the presence of organosilane mercapto group mesoporous silicas (MPTMS).
Final, used the H2O2 or HNO3 as oxidation agent to change the thiol (-SH) group to sulfonic acid (-SO3H) group. By the way, the conversion of thiol-functionalized mesoporous silicas to sulfonic acid-functionalized mesoporous silicas using Cu2+ without oxidation agent was achieved.
1. Bhatia, S. Zeolite catalysis principles and application, CRC press, Florida, 1990.
2. Imelik, B.; Naccache, Y.; Vedrine, J. C.; Coudurier, C.; Praliaud, H. Catalyhsis by zeolite, Elesevier, Amstrordam, 1980.
3. Ward, W. J. Molecular sieve catalysts, in applied industrial catalysis, Vol.3, Academic press, New York, 1984.
4. IUPAC. “Manual of symbols and Terminology for physicochemical Quantities and Units Appendix Ⅱ : Definitions, Terminology and Symbols in Colloid and Surface Chemistry Part Ⅰ”, Pure Appl. Chem. 1972, 31, 579.
5. Kresge, C. T.; Leonowica, M.E.; Roth, W.J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-712.
6. Beck, J. S.; Vartuli, J. C.; Roth, W.J.; Leonowica, M.E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H,; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843.
7. Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
8. Neumann, R.; Khenkin, A. M. Chem. Commun. 1996, 23, 2643-2644.
9. Charkraborty, B.; Pulikottil, A. C.; Viswanathan, B. Catal. Lett. 1996, 39, 63-65.
10. Hartmann, M.; Poppl, A.; Kevan, L. J. Phys. Chem. 1996, 100, 9906-9910.
11. Corma, A.; Navarro, M. T.; Perez–Pariente, J.; Sanchez, F. Stud.
Surf. Sci. Catal. 1994, 84, 69.
12. Reddy, J. S.; Sayari, A. J. Chem. Soc., Chem. Commun. 1995, 21,
2231-2232.
13. Wu, C. G.; Bein, T. Science 1994, 264, 1757-1759.
14. Wu, C. G.; Bein, T. Science 1994, 266, 1013-1015.
15. Wu, C. G.; Bein, T. Chem. Mater. 1994, 6, 1109-1112.
16. (a) Lee, Y.S.; Surjadi. D.; Rathman, J. F. Langmuir 1996, 12,
6202-6210. (b) Ko, C. H.; Ryoo, R. Chem. Commun. 1996, 21,
2467-2468.
17. Tsang,S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y.
C.; Sadler, P. J. J. Chem. Soc., Chem. Commun. 1995, 17, 1803-1804.
18. Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. J. Chem. Soc.
Chem. Commun. 1995, 16, 1617-1618.
19. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew. Chem. Int.
Ed. 2006, 45, 3216-2151.
20. Yano, K.; Fukushima, Y. Bulletin of Chemical Society of Japan
2003, 77, 2103-2109.
21. McGehee, M. D.; Gruner, S. M.; Yao, N.; Chun,C. M.; Navrotsky, A.;
Aksay, I. A. Proc. 52nd Ann. Mtg. MSA, eds.: Bailey, G. W.;
Garratt-Reed, A. J. Microscopy Society of America 1994, 448-49.
22. Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Chem. Eng. Sci.
2009, 64, 3721-3728.
23. Belmabkhout, Y.; Sayari, A. Chem. Eng. Sci. 2009, 64, 3729-3735.
24. Ikeda, K.; Kawamura, Y.; Yamamoto, T.; Iwamoto, M. Catal.
Commun. 2008, 9, 106-110.
25. Mokaya, R.; Jones, W. Chem. Commun. 1996, 983-984.
26. Robles-Dutenhefner, P. A.; da Silva Rocha, K. A.; Sousa, E. M. B.;
Gusevskaya, E. V. J. Catal. 2009, 265, 72-79.
27. Yang, H.; Deng, Y.; Du, C.; Jin, S. Appl. Clay Sci. 2010, 47, 351-355.
28. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,
P.;Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994,
368, 317-321.
29. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
30. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.;
Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
31. Dai, L. X.; Tabata, K.; Suzuki, E.; Tatsumi, T. Chem. Mater. 2001,
13, 208-212.
32. Vinu, A.; Dedecek, J.; Murugesan, V.; Hartmann, M. Chem. Mater.
2002, 14, 2433-2435.
33. Che, S.; Sakamoto, Y.; Yoshitake, H.; Terasaki, O.; Tatsumi, T. J.
Phys. Chem. B 2001, 105, 10565-10572.
34. Wongkasemjit, S.; Tamuang, S.; Tanglumlerta, W.; Imae, T. Mater.
Chem. Phys. 2009, 117, 301-306.
35. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka,B.F.; Stucky, G. D. Science 1998, 279, 548-552.
36. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am.
Chem. Soc. 1998, 120, 6024-6036.
37. Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc.
2000, 122, 11925-11933.
38. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000, 12,
1961-1968.
39. Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys.
Chem. B 2000, 104, 11465-11471.
40. Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B 2001, 105, 6817-6823.
41. Todros, T. F. “Surfactant”, Academic Press, London, 1984.
42. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys.
Acta. 1977, 470, 185.
43. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed,
VHC, New York, 1999.
44. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. Colloids and Surfaces A 1996,
111, 195-202.
45. Holmerg, K.; Junsson, B.; Kronberg, B.; Lindman, B. “ Surfactant
and Polymers in Aqueous Solution ” , 2nd Ed, John Wiley & Sons
Ltd, Endlang, 2003.
46. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,
P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994,
368, 317-321.
47. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth D. F.; Feng, P.; Gier,
T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schüth, F.; Stucky, G.
D. Chem. Mater. 1994, 6, 1176-1191.
48. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
49. Iler, R. K. “The Chemistry of Silica”, John Wiley, New York, 1979.
50. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 ,
Wiley-Interscience publications: New York, 2000.
51. Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Microporous
Mater. 1993, 2, 27-34.
52. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y. U.; Terasaki, O.;
Park, S. E.; Stucky, G. D. J. Phys. Chem. B 2002, 106, 2552-2558.
53. A. Steel, S. W. Carr, M. W. Anderson, Chem. Commun., 1994,
1571-1572.
54. Flodstroüm, K.; Wennerstroöm, H.; Alfredsson, V. Langmuir 2004,
20, 680-688
55. Attard, G. S.; Glyde, Y. C.; Göltner, C. G. Nature 1995, 378, 23-24.
56. Wan, Y.; Zhao, D. Y. Chem. Rev. 2007, 107, 2821-2860.
57. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong,
M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53-64.
(c) Brunel, D. Micropor. and Mesopor. Mater. 1999, 27, 329-344.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F.
Micropor. and Mesopor. Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud. Surf. Sci. Catal.
2000, 129, 251.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15,
2161-2173.
58. Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm. 1996,1367-1368.
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J.
Mater. Chem. 2002, 12, 3452-3457.
59. Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun.
1999, 201-202.
60. Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
(b) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P.
J. Phys. Chem. B 2001, 105, 9935-9942.
61. Kao, H. M.; Liao, C.H.; Hung, T. T.; Pan, Y. C.; Chiang, A. S.
Chem. Mater. 2008, 20, 2412-2422.
62. Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Micropor. and Mesopor.
Mater. 2008, 110, 461-471.
63. Kao, H. M.; Lee, L. P.; Palani, A. Anal. Chem. 2008, 80, 3016-3019.
64. Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. J.
Phys. Chem. B, 2001, 105, 9935-9942.
65. Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Micropor. and Mesopor.
Mater. 2008, 113, 212-223.
66. Park, S. S.; Han, D. S.; Han, S. C.; Jinb, M. J.; Ohsunac, T. Chem.
Commun., 2006, 4131-4133.
67. Kao, H. M.; Wu, J. D.; Cheng, C. C.; Chiang, A. S. Micropor. and
Mesopor. Mater. 2006, 88, 319-328.
68. Kao, H. M.; Chang, P. C.; Wu, J. D.; Chiang, A. S.; Lee, C. H.
Micropor. and Mesopor. Mater. 2006, 97, 9-20.
69. Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
70. Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
71. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am.
Chem. Soc. 1999, 121, 9611-9614.
72. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem. Mater.
1999, 11, 3302-3308.
73. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999,
402, 867-871.
74. Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G. A.
Acc. Chem. Res. 2005, 38, 305-312.
75. Pan, Y. C,; Wu, H. Y,; Kao, H. M. J. Phys. Chem. C. 2009, 113,
2690-2698.
76. Nakajima, K.; Lu, D.; Kondo, J. N. et al. Chem. Lett. 2003, 32, 950-951.
77. Liang, Y.; Anwander, R. Micropor. and Mesopor. Mater. 2004, 72,
153-165.
78. Muth, O.; Schellbach, S.; Fr, ba. M. Chem. Commun. 2001, 2032-2033.
79. Goto, W.; Inagaki, S. Chem. Commun. 2002, 20, 2410-2411.
80. Burleigh, M. C.; Jayasundera, S,; Spector, M. S. Chem. Mater. 2004,
16, 3-5.
81. Zhang, L.; Zhang, W.; Shi, J. Chem. Commun. 2003, 210-211.
82. Burleigh, M. C.; Markowitz, M. A,; Spector, M. S. Environ. Sci.
Technol. 2002, 36, 2515-2518.
83. Corma, A.;Das, A.; Garcia H. J. Catal. 2005, 229, 322-331.
84. Kim, S. Y,; Lee, J. W.; Jung, J. H. Chem. Mater. 2007, 19, 135-137.
85. Lee, C. H,; Sung, S. P,; Choe, S. J. Micropor. and Mesopor. Mater. 2001,
46, 257-264.
86. Besson, E.; Mehdi, A.; Lerner, D. A. J. Mater. Chem. 2005, 15, 803-809.
87. Park, S. S.; An, B.; Melde, B. J. Micropor. and Mesopor. Mater.
2008, 111, 367-378.
88. Wang, X. Q.; Lu, D. N.; Austin, R. Langmuir 2007, 23, 5735-5739.
89. Li, C. M.; Liu, J.; Shi, X. J. Phys. Chem. C 2007, 111, 10948-10954.
90. Yang, Q.; Liu, j.; Yang, J.; Zhang, L.; Feng, Z.; Zhang, J.; Li, C. Micropor. and Mesopor. Mater. 2005, 77, 257-264.
91. Nakamura, T,; Yamada, Y.; Yano, K. J. Mater. Chem. 2007, 17, 3726-3732.
92. Hu, J.; Chen, L.; Zhu, K.; Suchopar, A.; Richards, R. Catalysis Today 2007, 122, 277-283.
93. Nohair, B.; MacQuarrie, S.; Crudden, C. M.; Kaliaguine, S. J. Phys. Chem. C 2008, 112, 6065-6072.
94. Jin, Y.; Wang, P.; Yin, D.; Liu, J.; Qiu, H.; and Yu, N. Micropor. and Mesopor. Mater. 2008, 111, 569-576.
95. Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C 2010, 114, 7021-7029.
96. Kumagi, H.; Yano, K. Chem. Mater. 2010, 22, 5112-5118.
97. Wu, P.; Bai, P.; Lei, Z.; Loh, K. P.; Zhao, X. S. Micropor. and Mesopor. Mater.2011, 141, 222-230.
98. (a) Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317-318.
(b) Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
(c) Van Rhijn, W. M.; De Vos, D. E.; Bossaert, W. D.; Bullen, J.;
Wouters, B.; Grobet, P.; Jacobs, P. A. Stud. Surf. Sci. Catal. 1998,
117, 183.
99. Tsai, H. G.; Chiu, P. J.; Jheng, G. L.; Ting, C. C.; Pan, Y. C.; Kao, H. M. J. Colloid. Interf. Sci. 2011, 359, 86-94.
100. Yang, Q.; Liu, J.; Yang, J.; Kapoor, M. P.; Inagaki, S.; Li, C. J. Catal. 2004, 228, 265-272.
101. Liu, J.; Yang, Q.; Kapoor, M. P.; Setoyama, N.; Inagaki, S.;
Yang, J.; Zhang, L. J. Phys. Chem. B 2005, 109, 12250-12256.
102. Kiyotaka, N. ; Ikuyoshi, T. ; Michikazu, H. ; Shigenobu, H. ;
Kazunari, D. ; Junko, N. K. Catalysis Today 2006, 116, 151-156.
103. Cho, E. B.; Kim, D. Journal of Physics and Chemistry of Solids
2008, 69, 1142-1146.
104. Park, S.; Baeck, S. H.; Kim, T. J.; Chung, Y. M.; Oh, S. H.; Song, I.
K. J. Mol. Catal. A: Chem. 2010, 319, 98-107.
105. Hao, N.; Han, L.; Yang, Y.; Wanga, H.; Webley, P. A.; Zhao, D. Appl.
Sur. Sci. 2010, 256, 5334-5342.
106. Wu, H. Y.; Liao, C. H.; Pan, Y. C.; Yeh, C. L.; Kao, H. M.
Micropor. Mesopor. Mater. 2009, 119, 109-116.
107. Baiker, A. Int. Chem. Eng., 1985, 17, 25.
108. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem.
Soc., 1940, 62, 1723-1732.
109. 王奕凱, 邱宗明, 李秉傑合譯, “非均勻系催化原理及應用“, 國立
編譯館, 渤海堂文化公司, 台北, 1993.
110. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc., 1951,
73, 373-380.
111. Gregg, S. J.; Sing, K. S. W. “Adsorption, Surface Area and Porosity”,
2nd Ed., Academic press, New York, NY, 1982.
112. G. Ertl, H. KnÖzinger, J. Weitkamp, “Handbook of Heterogeneous
Catalysis”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
113. 劉銘璋; 林岱瑋; 王漢松; 張秋玲 第七章 熱分析, 台灣大學化學系.
114. Pan, Y. C.; Liao, C. H.; Kao, H. M. The Chinese Chemical Society, Taipei,
2008, 66, 1-11.
115. Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K.V.; Griffin, R. G.
J. Chem. Phys. 1995, 103. 6951-6958.
116. Ashida, J.; Asakura, T. J. Magn. Reson. 2003, 165, 180-183.
117. http://fr.wikipedia.org/wiki/Fichier:Scheme_TEM.gif
118. http://www.ch.ntu.edu.tw/faculty/Instrument/ICP-MS.htm
119. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter6_report.pdf
120. http://www.hkbu.edu.hk/~csar/xps.html
121. Hamoudi, S.; Kaliaguine, S. Micropor. and Mesopor. Mater. 2003,
59, 195–204.
122. Naik, S. P.; Elangovan, S. P.; Okubo, T.; Sokolov, I. J. Phys. Chem.
C 2007, 111, 11168-11173.
123. Mou, C. Y.; Lin, H. P. Pure Appl. Chem. 2000, 72, 137-146.
124. Tchinda, A. J.; Ngameni, E.; Kenfack, I. T.; Walcarius, A. Chem.
Mater. 2009, 21, 4111-4121.
125. Sadasivan, S. ; Khushalanib, D. ; Mann, S. J. Mater. Chem. 2003, 13,
1023-1029.
126. Yang,L.M. ; Wang,Y.J. ; Luo, F.S. ; Dai ,Y.Y. Micropor. and
Mesopor. Mater. 2005, 84, 275-282.
127. Wang, J. ; Yu, N. ; Zheng, A. ; Yang, J. ; Wu, D. ; Sun, Y. ; Ye, C.;
Deng, F. Micropor. and Mesopor. Mater. 2006, 89, 219-226.
128. Shevchenko, N.; Zaitsev, V.; Walcarius A. Environ. Sci. Technol.
2008, 42, 6922-6928.