跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李彥佑
Yen-Yu Lee
論文名稱: 液態錫(銀、銅、鎳、銦)合金的表面氧化行為研究
Surface oxidation of molten Sn(Ag, Ni, In, Cu) alloys
指導教授: 劉正毓
Cheng-Yi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 51
中文關鍵詞: 無鉛焊料氧化電動勢
外文關鍵詞: lead-free solder, oxidation, electromotive force
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討液態錫(銀、銅、鎳、銦)合金的表面氧化行為,我們認為表面氧化層的結構(相和密度)對錫合金的表面氧化形成是主要的關鍵因素,另外我們發現焊料合金的添加合金元素,對錫表面氧化層的結構(相和密度)有很大的影響,我們發現可以從添加合金元素的電動勢(electromotive force, EMF) 及氧化物形成的自由能大小,而預測添加合金元素對表面的氧化影響行為。本研究之添加合金元素可分為:氧化增強及氧化減緩兩類,當以上兩種合金元素同時添加入錫時,錫表面的氧化行為可能被其中某一添加元素主導,主導元素的決定與添加合金元素的濃度比例有極大的關連性,添加合金元素對表面氧化行為的影響將在本文中作深入討論,且提出詳細的機制。


    The surface oxidations of molten Sn(Ag, Ni, In, Cu) alloys are studied. We conclude that the microstructure (phase and density) of the surface oxide layer is the key factor for the surface oxidation formation. And, we found that the microstructure (phase and density) of the Sn surface oxide layer is highly influenced by the additives in the solder alloys, which can be roughly anticipated from the additives’ EMF values and Gibbs free energies of oxide formation. The detail effect (either retarding or enhancing) of the additives on the surface oxidation would be discussed and proposed in this paper.

    中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 致謝……………………………………………………………………iii 目錄……………………………………………………………………iv 圖目錄…………………………………………………………………vi 表目錄………………………………………………………………viii 符號說明………………………………………………………………ix 第一章 緒論……………………………………………………………1 1.1研究背景…………………………………………………1 1.2波焊技術…………………………………………………3 1.3潤濕和成渣率……………………………………………5 第二章 文獻回顧………………………………………………………6 2.1 Wood''s的合金氧化模型…………………………………6 2.2 Wagner 氧化理論………………………………………9 2.3 合金由外氧化朝內氧化轉變………………………9 2.4 氧化動力學…………………………………………12 2.5 氧化的機制……………………………………………13 2.6 電動勢的意義…………………………………………15 2.7 防止氧化的方式………………………………………16 第三章 實驗流程………………………………………………………18 3.1 SEM原理和試片準備…………………………………18 3.2 ESCA 原理和分析……………………………………19 第四章 結果……………………………………………………………20 4.1 二元錫合金的表面氧化行為…………………………20 4.2 三元錫合金氧化………………………………………23 第五章 討論……………………………………………………………30 5.1 錫表面氧化機制………………………………………30 5.2 表面氧化物結構和氧化速率的關係…………………30 5.3 添加合金元素和表面氧化物形成的關係……………33 5.3.1 銅添加元素的氧化增強效應…………………34 5.3.2 銀、鎳、銦添加元素的減緩效應……………38 5.4 相對重量百分比…………………………………………43 5.5 氧化層厚度和重量增加值的關係………………………46 第六章 總結……………………………………………………………48 參考文獻………………………………………………………………49

    [1] M. Arra, D. Shangguan, S. Yi, R. Thalhammer, H. Fockenberger, “ Development of lead-free wave soldering process,” IEEE Transactions on Electronics Packaging Manufacturing, 25 (4) (2002), pp. 289-299
    [2] C. E. Ho, A S. C. Yang, A C. R. Kao, “Interfacial reaction issues for lead-free electronic solders,” J Mater Sci: Mater Electron 18 (2007), pp. 155–174
    [3] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, “Effects of Minor Fe, Co, and Ni Additions on the Reaction between SnAgCu Solder and Cu,” Journal of Alloys and Compounds, 478 (2008), pp. 121-127
    [4] Ricky W. Chuang, Selah Choe, and Chin C. Lee, “A Fluxless Sn-In Bonding Process Achieving High Re-Melting Temperature,” in Proc. 51st IEEE Electronic Components and Technology Conference, 29 (2001), pp. 671-674.
    [5] WAGNER C. Theoretical anlysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society, (10) (1952), pp.369-380.
    [6] Wagner C. Formation of composite scales consisting of oxidation of different metals, Journal of the Electrochemical Society, (11) (1956), pp. 627-633.
    [7] He Ye-dong,Li Zheng-wei,Gao Wei.Transition from external to internal oxidation of Ni—Cr alloys, High-temperature Corrosion and Protection, 18S (2000), pp. 17-22.
    [8]王德仁,何亞東,李順華等,Ag-In合金在不同氧分壓下的氧化現象,中國腐蝕與防護學報, 22(2) (2002), pp. 79-83。
    [9] Wagner C. Oxidation of involving noble metals[J].Journal of the Electrochemical Society, (10) (1952), pp. 571-580.
    [10] Neil Briks, Gerald h. Meier, and Fred S. Pettit, “Introduction to the High-Temperature Oxidation of Metals” 2nd edition, Cambridge University Press (2006), pp. 39-74.
    [11]Robert DeHoff, ”Thermodynamics in Materials Science ” second edition, Taylor & Franics imprint.
    [12] R. Kawabata, M. C. Munetaka, M. Iwase, “ A Thermodynamic Study of Ru-Sn Binary Alloys,” Metallurgical and Materials Transactions B, 29B (6) (1998), pp. 577-581.
    [13] Beranger, Gerard, ”corrosion and protection of metals and alloys”, John Wiley & Sons Inc.
    [14] Graeme Wright, “corrosion protection of metals”, VIII-Metals-J- Corrosion protection
    [15] D. W. YUAN, R. F. YAN, G. SIMKOVICH, “Rapid oxidation of liquid tin and its alloys at 600 to 800 ℃,” Journal of Materials Science, 34 (1999), pp. 2911 – 2920.
    [16] CRC Handbook of Chemistry and Physics, 70th edition.
    [17] G. R. Wallwork, “ The oxidation of alloy,” Rep. Prog. Phys., 39 (5) (1976), pp. 401-485.
    [18] Y. Zhu, K. Mimura, and M. Isshiki, “ The Effect of Impurities on the Formation of the Inner Porous Layer in the Cu2O Scale during Copper Oxidation,” Oxidation of Metals, 61(4) (2004), pp. 293-314.
    [19] M. J. Alam, D. C. Cameron, “ Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377-378 (2000), pp. 455-459.
    [20] Y. Niu, Y. Wu, F. Gesmundo, “ The oxidation of three Ni–6Si–xAl alloys in 1 atm O2 at 1000 ℃,” Corrosion Science 48 (2006), pp. 1–22.
    [21] G. Schimmel, M. Rettenmayr, B. Kempf, J. Fischer-Buehner, “ Study on the Microstructure of Internally Oxidized Ag–Sn–In Alloys,” Oxidation of Metals, 70 (2008), pp. 25–38.

    QR CODE
    :::