| 研究生: |
林耿立 Geng-Li Lin |
|---|---|
| 論文名稱: |
2D C-arm與3D CT影像方位校準應用於C-arm影像輔助手術導引 2D C-Arm/3D CT image registration for C-arm-based navigation |
| 指導教授: |
曾清秀
Ching-Shiow Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 計算統一設備架構 、電腦輔助手術導引 、數位重建放射影像 、2D-3D 方位校準 |
| 外文關鍵詞: | CUDA, Computer-assisted Surgical navigation, DRR, 2D-3D Registration |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C-arm影像輔助手術導航系統已廣泛的應用在骨科手術上,然而在C-arm前後向影像上很難正確規劃脊椎手術的路徑,因此系統使用上受到限制。本研究發展一套整合二維 C-arm影像及三維電腦斷層影像的方位校準方法,來獲得C-arm與CT影像座標系之間的轉換矩陣,使術前於CT影像上規畫好的路徑或是植入物模型經座標轉換能顯示在術中C-arm影像上,作為手術導引的依據。手術時,手術器械的方位也即時顯示在CT影像以及C-arm影像上,協助醫師更準確與可靠的定位手術器械。
首先將 C-arm影像扭正,並計算其X-ray發射源,然後選取 C-arm影像與 CT 影像上三個相同的特徵點,利用特徵點的座標建立C-arm與 CT影像座標系的初始方位校準,接著以光束投影法(Ray Casting)產生模擬X-ray成像原理的DRR影像。本研究採用Nvidia的CUDA開發環境來平行處理X-ray吸收性的線積分運算,以五種灰階為基礎的相似性量測(正規化交互關聯性、梯度關聯性、區域強度關聯性、梯度差異關聯性、共同資訊演算法)搭配三種最佳化方法(包威爾演算法、下坡單型法、基因演算法)進行比較,評估各種演算法在影像對位結果的準確性、收斂範圍與花費時間。結果顯示以正規化交互關聯性作為影像量測的目標函數,並使用下坡單型法搜尋最佳的方位校準矩陣,可使C-arm影像與DRR影像達到最大的相似度。
2D-3D方位校準誤差以脊椎假體模型進行實驗評估,初始收斂範圍限定在±10mm和±10度內,實驗共四十組,平均位移誤差及平均角度誤差分別為0.22mm與0.25 度,成功率為90%,平均對位所需時間為16秒。
C-arm image assisted surgical navigation system has been broadly applied to orthopedic surgery. For spinal surgery, accurate path planning on the C-arm AP image is difficult. Therefore, the applicability of the system is restricted. This research develops a 2D C-arm/3D CT image registration method to obtain the transformation matrix between C-arm and CT image coordinate frames. Through the transformation matrix, the preplanned surgical path or implant model on preoperative CT images can be transformed and displayed on the C-arm images for surgical guidance. During operation, the locations of surgical instruments will also be displayed on both CT and C-arm images to help the surgeon to precisely and safely position surgical instruments.
First, the C-arm images are calibrated and the focus point of X-ray is determined. Then, select three identical characteristic points from C-arm images and CT images to obtain the initial registration between the C-arm and CT image frames. After that, the ray-casting algorithm is applied to generate digital reconstructed radiographs (DRR) from CT images. To speed up the generation of DRR, an Nvida’s CUDA graphics processing unit (GPU) is used for parallel computing of linear integration of X-ray absorptivity. Five similarity measures of 2D-3D registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell, Downhill Simplex, and Genetic Algorithm are applied to evaluate the performance of converge range, efficiency and accuracy. The results show that the combination of Normalized Cross-Correlation measure with Downhill Simplex optimization algorithm has maximum correlation and similarity in C-arm and DRR images.
Saw bone models are used in the experiment to evaluate registration accuracy. The initial convergence range is set within ±10mm and ±10 degree. The average errors in displacement and orientation of forty experiment sets are 0.22mm and 0.25° respectively. The success rate is approximately 90% and average registration time takes 16 seconds.
[1].P. J. Besl, N. D. McKay, “A Method for Registration of 3-D Shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, 1992.
[2].I. Marintschev, F. Gras, K. Klos, A. Wilharm, T. Muckley and G. O. Hofmann, “Navigation of vertebro-pelvic fixations based on CT-fluoro matching” , European Spine Journal, Vol.19, pp. 1921-1927 , 2010.
[3].M. Shoham, D. S. Brink, A. Friedlander, N. Knoller, “Bone Mounted Miniature Robotic System for Spine Surgery”,IEEE International Conference on Biomedical Robotics and Biomechatronics, Vol.19, pp.917- 920 , 2006.
[4].M.Avanzo, P.Romanell, “Spinal radiosurgery: technology and clinical outcomes” , Neurosurgical Review, Vol.32, pp.1-13 , 2009.
[5].J. Sanders, E. Kandrot, " CUDA by Example:an introduction to general purpose gpu programming", ISBN-0131387685, Addison Wesley , 2010.
[6].O. Gonschorek, S. Hauck, U. Spiegl, T. Weis, R. Patzold and V. Buhren, "O-armR-based spinal navigation and intraoperative 3D-imaging: first experiences" , European Journal Of Trauma And Emergency Surgery , vol. 37, pp.99-108, 2011.
[7].P. Markelj, D. Tomaževič, B. Likar, “A review of 3D/2D registration methods for image-guided interventions”, Medical Image Analysis, in press , 2010.
[8].R. Mohamed, A. H. William, D. K. Richard, D. A. Dennis, “Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images” , Biomech, vol.38, pp.229-39, 2005.
[9].H. Livyatan, Z. Yaniv, L. Joskowicz, “Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT.”, IEEE Transactions on Medical Imaging, vol. 22, no. 11, pp. 1395-1406, 2003.
[10].G. Zheng, L. P. Nolte, S. J. Ferguson., "Scaled, patient specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy.", International Journal of Computer Assisted Radiology and Surgery, Vol. 6, pp.351-366, 2010.
[11].L. Joskowicz, D. Knaan, “How to achieve fast, accurate, and robust rigid registration between fluoroscopic X-ray and CT images,” Computer Assisted Radiology and Surgery, pp. 147-152, 2004.
[12].P. Markelj, D. Tomazevic, F. Pernus, “Robust Gradient-Based 3D/2D Registration of CT and MR to X-Ray Images.” , IEEE Transactions on Medical Imaging, vol. 27, no. 12, pp. 1704–1714 , 2008.
[13].P. Markelj,D.Tomaˇ zeviˇ c, B. Likar and F. Pernuˇ s , "Registration of 3D Pre-interventional to 2D Intra-interventional Medical Images" , Medical Physics and Biomedical Engineering, vol. 25,pp. 1924–1927, 2009.
[14].W. E. Lorensen, H. E. Cline, "Marching cubes: a high resolution 3D surface construction algorithm.", Computer Graphics, Vol. 21, pp. 163-169, 1987.
[15].A. Telea, “An image inpainting technique based on the fast marching method” , Journal of Graphics Tools, Vo l.9, pp. 25-36, 2004.
[16].J. Canny, "A computational approach to edge detection.", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, 1986.
[17].G. Zheng, J. Kowal, M.A. Gonzalez Ballester, "Registration techniques for computer navigation", Current Orthopaedics, pp. 170-179, 2007.
[18].F. Ino, J. Gomita, Y. Kawasaki, K. Hagihara., “A GPGPU approach for accelerating 2-D/3-D rigid registration of medical images”. In Parallel and Distributed Processing and Applications, vol. 4330, PP. 939-950, 2006.
[19].Youngjun Kim, Kang-Il Kim, Jin hyeok Choi, Kunwoo Lee, "Novel methods for 3D postoperative analysis of total knee arthroplasty using 2D–3Dimage registration.", Clinical Biomechanics, pp. 384-391, 2011.
[20].H. P. William,S. A. Teukolsky,W. T. Vetterling ,B. P. Flannery, " Numerical Recipes: The Art of Scientific Computing", ISBN-0521884071, Cambridge University Press, UK, 2007.
[21].G. P. Penney,J. Weese , P. Desmedt , D. Hill,D.J.Hawkes, “A Comparison of Similarity Measures for Use in 2-D–3-D Medical Image Registration.” , IEEE Transactions on Medical Imaging, vol.17, no.4, pp. 586-595, 1998.
[22].D. Skerl,D.Tomazevi,B. Likar, "Evaluation of similarity measures for reconstruction-based registration in image-guided radiotherapy and surgery” , International Journal of Radiation Oncology Biology Physics, vol. 65, pp. 943–953, 2006.
[23].楊遠祥, "應用於股骨轉子間骨折回復手術之C-arm based手術導引系統", 碩士論文, 中央大學機械工程研究所, 2005.
[24].戴君益, “C-arm影像與電腦斷層影像之方位校準方法”, 碩士論文, 中央大學機械工程研究所, 2007.
[25].朱鴻宇, “應用輪廓與灰階特徵於二維C-arm影像及三維電腦斷層影像之方位校準”, 碩士論文, 中央大學機械工程研究所, 2008.
[26].蘇木春、張孝德“機器學習:類神經網路、模糊系統及基因演算法則”, 全華圖書科技股份有限公司, Ch9,1999.