| 研究生: |
胡喬晏 Joanne Hu |
|---|---|
| 論文名稱: | Effective Hamiltonian Circle Actions with Finite Fixed Points on the Complex Projective Plane |
| 指導教授: |
姚美琳
Mei-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | Symplectic geometry 、Hamiltonian action 、Effective Hamiltonian action |
| 外文關鍵詞: | Symplectic geometry, Hamiltonian action, Effective Hamiltonian action |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們根據 Y. Karshon 博士在1998年發表的論文《 Periodic Hamiltonian Flows on Four Dimensional Manifolds 》研究對於在複射影平面上具有有限不動點的一維球作用進行分類。我們的結論是:每個這樣的作用都會辛同構到線性作用。
We classify the effective Hamiltonian $S^1$-actions with finite fixed points on the complex projective plane based on the work of Y. Karshon, ``Periodic Hamiltonian Flows on Four Dimensional Manifolds". Our conclusion is that every such action is symplectomorphic to a standard linear case.
[1] K. Ahara and A. Hattori. 4-dimensional symplectic S1-manifolds admitting moment map. J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 38(2):251–298, 1991.
[2] M. Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics.
Birkhäuser Verlag, Basel, revised edition, 2004.
[3] A. Baker. Matrix groups. Springer Undergraduate Mathematics Series. Springer-Verlag London,
Ltd., London, 2002. An introduction to Lie group theory.
[4] D. Barden and C. Thomas. An introduction to differential manifolds. Imperial College Press,
London, 2003.
[5] A. Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2001.
[6] A. Cannas da Silva. Symplectic toric manifolds. In Symplectic geometry of integrable Hamiltonian
systems (Barcelona, 2001), Adv. Courses Math. CRM Barcelona, pages 85–173. Birkhäuser, Basel,
2003.
[7] R. Chiang and L. Kessler. Cyclic actions on rational ruled symplectic four-manifolds. Transform.
Groups, 24(4):987–1000, 2019.
[8] M. D. Crossley. Essential topology. Springer Undergraduate Mathematics Series. Springer-Verlag
London, Ltd., London, 2005.
[9] R. Fintushel. Circle actions on simply connected 4-manifolds. Trans. Amer. Math. Soc., 230:147–
171, 1977.
[10] R. Fintushel. Classification of circle actions on 4-manifolds. Trans. Amer. Math. Soc., 242:377–390,
1978.
[11] L. Godinho. On certain symplectic circle actions. J. Symplectic Geom., 3(3):357–383, 2005.
[12] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[13] D. Jang. Symplectic periodic flows with exactly three equilibrium points. Ergodic Theory Dynam.
Systems, 34(6):1930–1963, 2014.
[14] D. Jang. Circle actions on almost complex manifolds with isolated fixed points. J. Geom. Phys.,
119:187–192, 2017.
[15] D. Jang. Symplectic circle actions with isolated fixed points. J. Symplectic Geom., 15(4):1071–
1087, 2017.
41
[16] D. Jang. Circle actions on oriented manifolds with discrete fixed point sets and classification in
dimension 4. J. Geom. Phys., 133:181–194, 2018.
[17] Y. Karshon. Periodic Hamiltonian flows on four-dimensional manifolds. Mem. Amer. Math. Soc.,
141(672):viii+71, 1999.
[18] Y. Karshon and L. Kessler. Circle and torus actions on equal symplectic blow-ups of CP2. Math.
Res. Lett., 14(5):807–823, 2007.
[19] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York,
third edition, 2002.
[20] H. Li and S. Tolman. Hamiltonian circle actions with minimal fixed sets. Internat. J. Math.,
23(8):1250071, 36, 2012.
[21] P. Li. Circle action with prescribed number of fixed points. Acta Math. Sin. (Engl. Ser.),
31(6):1035–1042, 2015.
[22] N. Lindsay. Hamiltonian circle actions on complete intersections. Bull. Lond. Math. Soc.,
54(1):206–212, 2022.
[23] D. McDuff. Blow ups and symplectic embeddings in dimension 4. Topology, 30(3):409–421, 1991.
[24] D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York, second edition, 1998.
[25] J. Milnor. Morse theory. Princeton University Press, Princeton, N.J.„ 1963. Based on lecture
notes by M. Spivak and R. Wells.
[26] J. R. Munkres. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J.„, 1975.
[27] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park,
CA, 1984.
[28] L. W. Tu. An introduction to manifolds. Universitext. Springer,