跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王善民
Shan-Min Wang
論文名稱: Ti-6Al-4V之超塑性成形製程模擬與分析
Superplastic Forming Processes Simulation and Analysis of Ti-6Al-4V Alloy
指導教授: 黃豐元
Feng-Yun Huang
李雄
Shyong Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 120
中文關鍵詞: 有限元素法超塑性成形Ti-6Al-4V
外文關鍵詞: Ti-6Al-4V, SPF, FEM
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超塑性吹氣成形是利用某些經特殊處理過使其具有超塑性能力的合金材料,在特殊的加工條件下,藉由其成形只需較低流變應力的特性,來完成具有複雜外形或尖銳角的成品。為了滿足成形之應變速率能維持在目標值附近,以達到最佳均勻變形之能力,並探討模具幾何性質、材料和邊界性質對成形壓力與時間和成品最終厚度分布之影響,本文使用有限元套裝軟體MARC並結合實驗來探討與分析Ti-6Al-4V鈑材之超塑性成形製程。在建立最佳之分析模式方面,本文分別使用了不同的維度和元素來分析比較並探討其中之差異。結果顯示三維薄膜元素模擬之結果與其實驗間之數據的誤差值低於10%。由分析的結果可以得知,以下七項可使成品有較佳之厚度分布:
    (1) 改變鈑材局部厚度
    (2) 增加潤滑性
    (3) 增加拔模角角度
    (4) 加大入模角和下導角半徑
    (5) 晶粒細化
    (6) 降低寬深比
    (7) 增加鈑材之挾持距離
    在相同應變速率的前提下,以下五點可以減少成形之時間:
    (1) 晶粒細化
    (2) 增加拔模角角度
    (3) 加大入模角和下導角半徑
    (4) 增加潤滑度
    (5) 降低寬深比


    Superplastic blow forming is that employs the some alloy materials of superplasticity under specially working environment by hot machine method etc….It uses the exceptional property of low stress to manufacture components of various product with complex curved surface or keen angle surface.
    In order to hold the excellent capability of uniform deform in the forming process, the strain rate has to be kept near the optimum target. In addition, to affect the geometric parameter of rectangle-boxed closed die, material and boundary properties are also been discussed with forming pressure vs. time history and final thickness distribution.
    This paper uses a combined commercial finite element program-MARC and experiment to analysis the superplatic forming processes of Ti-6Al-4V sheet. In the processes, using different dimension models and different element modals of simulation as numerical values to experiment, they compared what differences. Found the three-dimension element modal is the most accurate and its tolerance is less than 10%.
    According to the analysis results, below are some methods which promote uniform of final thickness distribution:
    (1) to change thickness of some locals
    (2) increase the lubrication between die and sheet
    (3) increase entry and up radius
    (4) increase draft angle
    (5) grain size refine
    (6) decrease aspect ratio
    Under the principle of constant strain rate, below are some methods which reduces forming time:
    (1) grain size refine
    (2) increase draft angle
    (3) increase entry and up radius
    (4) increase the lubrication between die and sheet
    (5) decrease aspect ratio

    第一章:緒論……………………………………………1 1-1 超塑性成形………………………………1 1-2 超塑性成形實驗流程與目的……………6 1-3 超塑性成形模擬流程與目的……………12 1-4 文獻回顧…………………………………15 1-5 研究範疇與目的………………………17 第二章:有限元素法之原理與軟體應用………………27 2-1 有限元素法之基礎理論…………………27 2-1-1 統御方程式……………………27 2-1-2 組成方程式……………………30 2-2 有限元軟體MARC之應用…………………32 2-2-1 MARC之功能與架構……………32 2-2-2 非線性代數求解與收斂定義…33 2-2-3 剛塑性理論……………………35 2-2-4 接觸判斷與摩擦效應…………37 2-2-5 負載步長與時間的關係………39 2-3 有限元軟體MARC之元素技術……………42 第三章:有限元模型之假設與建立…………………48 3-1 有限元模型之假設………………………48 3-2 有限元模型之建立………………………49 3-3 Ti-6Al-4V之高溫材料性質……………50 3-4 薄鈑成形理論……………………………52 3-5 二維與三維成形模擬之比較……………56 3-5-1 二維模擬與分析………………56 3-5-2 三維模擬與分析………………58 3-6 模擬與實驗之比較………………………62 第四章:成形參數對超塑性成形之影響與探討………84 4-1 摩擦力之影響與探討……………………84 4-2 入模角與下導角半徑之影響與探討……85 4-3 拔模角之影響與探討……………………86 4-4 寬深比之影響與探討……………………87 4-5 挾持距離之影響與探討…………………88 4-6 應變速率之影響與探討…………………89 4-7 材料性質之影響與探討…………………90 4-8 局部厚度改變之影響與探討……………91 4-9 成形參數影響之總結……………………92 第五章:結論……………………………………………103 參考文獻………………………………………………105 附錄Α:薄板成形程式…………………………………111 附錄Β:MARC程式……………………………………115

    【1】A.K.Ghosh and C.H.Hamilton, Seminar Course, Taiwan Feb. 13-15, pp.25(1990)
    【2】K.Higashi M.Mabuchi and T.G.Langdon, ”High-Strain-Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials”, ISIJ International, pp.1423-1438(1996)
    【3】J.W.Edington K.N.Melton and C.P.Cutler, Progress In Mat. Sci,Vol.21, No.2, pp.61-158(1976)
    【4】A.K.Ghosh C.H.Hamilton and J.A.Wert, ”Metals Form”, Vol.8, No.4, pp.172-190(1985)
    【5】S.C.Rama and N.Chandra, ”Development of a Pressure Prediction Method for Superplastic Forming Processes”, International Journal of Non-Linear Mechanics,Vol.26,No.5, pp.711-725(1991)
    【6】A.Huang A.Lowe M.J.Cardew-Hall, ”Experimental Validation of Sheet Thickness Optimisation For Superplastic Forming of Engineering Structures”, Journal of Materials Processing Technology,Vol.112, pp.136-143(2001)
    【7】A.K.Ghosh and C.H.Hamilton, ”Superplastic Forming of a Long Rectangular Box Section-Analysis and Experiment”, Proceedings of American Society for Metals on Process Modeling-Fundamental and Applications to Metals, pp.303-331(1979)
    【8】G.Kuperfarb Y.Germain and M.Abouaf, ”A Mechanical Study of Superplastic Forming of Ti-6Al-4V Sheet ”, Journal of Mechanical Working Technology,Vol.5, pp.159(1987)
    【9】N.Chandra and D.Kannan, ”Superplastic Sheet Metal of a Generalized Cup”, Journal of Materials Engineering and Performance,Vol.1(6), pp.801-812(1992)
    【10】J.Argyis and J.St.Doltsinis, ”An Apercu of Superplastic Forming”, In Plastic Today:Modeling Methods and Science Publ, pp.715(1985)
    【11】L.Carrino and G.Giuliano, ”Modeling of Superplastic Blow Forming”, Int.J.Mech.Vol.39, No.2, pp.193-199(1995)
    【12】M.Ballet E.Massoni andJ.L.Chenot, ”Viscoplastic Membrane Simulation for the Three-dimensional Analysis of Thin Sheet Metal Forming”, Conference on Comp. Plasticity, Barcelona, Spain(1987)
    【13】Y.Chen K.Kibble R.Hall and X.Huang, ”Numerical Analysis of Superplastic Blow Forming of Ti-6Al-4V Alloys”, Materials and Design,Vol.22, pp.679-685(2001)
    【14】K.S.Lee and H.Huh, ”Simulation of Superplastic Forming/Diffusion Bonding with Finite-Element Analysis Using the Convective Coordinate System”, Journal of Materials Processing Technology,Vol.89-90, pp.92-98(1999)
    【15】Ridha Hambli and Alain Potiron, ”Comparison Between 2D and 3D Numerical Modaling of Superplastic Forming Processes”, Comput Methods Appl.Mech Engrg 190, pp.4871-4880(2001)
    【16】Ridha Hambli Alain Potiron Fabrice Gueerin and Bernard Dumon, ”Numerical Pressure Predication Algorithm of Superplastic Forming Processes Using 2D and 3D Modals”, Journal of Materials Processing Technology,Vol.112, pp.90-93(2001)
    【17】Prasad K.D.V.Yarlagadda Prasad Gudimetla and Clayton Adam, ”Finite Element Analysis of High Strain Rate Superplastic Forming(SPF) of Al-Ti alloys”, Journal of Materials Processing Technology,Vol.130-131, pp.469-476(2002)
    【18】P.Hu Y.Q.Liu Y.X.Li and J.Lian, ”Rigid Viscoplastic Finite Element Analysis of The Gas-Pressure Constrained Bulging of Superplastic Circular Sheets Into Cone Disk Shape Dies”, Int.J.Mech.Sci,Vol.39 No.4, pp.486-496(1997)
    【19】Yong H. Kim Jung-Min Lee and S.S. Hong, ”Optimal design of superplastic forming processes”, Journal of Materials Processing Technology,Vol.112,pp.166-173(2001)
    【20】王新榮,陳時錦,劉亞忠,”有限元素法及其應用 ”,中央圖書出版社,pp.209-212 (1997)
    【21】H.L.Xing, Z.R. Wang,”Finite-element analysis and design of thin sheet superplastic forming”, Journal of Materials Processing Technology,Vol.68, pp.1-7(1997)
    【22】Gearge E.Dieter, ”Mechanical Metallurge”, University of Mary-land , Chap. pp.299-300
    【23】T.W.Kim, ” Heterogeneous microstructure of Ti-6Al-4V and its effect on superplastic deformation”, Scripta Materialia,Vol.45, pp.923-929(2001)
    【24】張銘鴻, ”超塑成形長方形盒厚度分布研究”, 國立中央大學機械工程研究所碩士論文,pp.11(1994)
    【25】MARC Volume B:Element Library
    【26】Abdel-Wahab El-Morsy and Ken-ichi Manabe, ”FE Simulation of Rectangular Box Forming Using Material Characteristics From the Multi-Dome Forming Test”, Journal of Materials Processing Technology,Vol.125-126, pp.772-777(2002)
    【27】Jung-Ho Cheng, ”Advanced Design of Superplastically Formed Components by Finite Element Simlation”, Journal of the Chinese Socity of Mechanical Engineers,Vol.13,No.4, pp.289-298(1992)
    【28】N.Chandra S.C.Rama and R.E.Goforth, ”Variable Optimum Strain-Rate for Dyanmically Recrystallizing Aluminum-Lithium Alloys”, Superplastic in Advanced Materials, Ed. S.Hori M. Tokizane and N.Furushiro, pp.765-770(1991)
    【29】A.K. Ghosh and C.H.Hamilton, ”Influence of Material Parameter and Microstructure on Superplastic Forming”, Metal.Trans.A,Vol.13A, pp.733-743(1982)

    QR CODE
    :::