| 研究生: |
石宇哲 SHIH, YU-JHE |
|---|---|
| 論文名稱: |
無頻率調制銣原子光鐘之研究 The study of rubidium optical clock without frequency modulation |
| 指導教授: |
鄭王曜
Cheng, Wang-Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 銣原子 、二級光鐘 |
| 外文關鍵詞: | Rubidium, secondary optical clock |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為了發展銣原子二級光鐘以建立時間頻率標準。實驗上,我們利用電光調制器將778 nm光纖雷射鎖在銣原子雙光子躍遷的交叉譜線。藉由改變電光調制器的調制頻率,進而改變雷射的頻率,以精密地量測銣原子5S-5D雙光子躍遷譜線。778 nm穩頻雷射的穩定度,在1秒的積分時間,Allan deviation已達到5×10^(-12),因為量測受限於銫原子鐘的穩定度,所以我們認為778 nm穩頻雷射的穩定度會更好。
我們修正光強度偏移造成原子躍遷頻率偏移的影響,藉由超精細結構的能階間隔,推算A及B超精細結構常數為:
A(85Rb,5D5/2):-2.2122(24) MHz,B(85Rb,5D5/2):2.6881(38) MHz,A(87Rb,5D5/2):-7.4595(29) MHz,B(87Rb,5D5/2):1.2748(23) MHz。同位素偏移(Isotope shift):160.630(7) MHz。
The aim of this thesis is to develop a rubidium secondary optical clock to establish a time and frequency standard. In this experiment, the 778 nm fiber laser is locked to crossover lines of rubidium two-photon transition via electro-optical modulator. When changing the modulation frequency of the electro-optic modulator, the laser frequency is correspondingly changed. So we can precisely measure the 5S-5D two-photon transition spectrum in rubidium.
For the stability of the 778 nm frequency-stabilized laser, the Allan deviation can reach 5×10^(-12) within 1 second of integration time. We believe that the stability of the 778 nm frequency-stabilized laser is better, because the measurement is limited by the stability of cesium atomic clock.
We correct the influence of the shift of atomic transition frequency caused by light intensity. In addition, we calculate the A and B hyperfine structure constants by using the energy level interval of hyperfine structure.
A(85Rb,5D5/2):-2.2122(24) MHz, B(85Rb,5D5/2):2.6881(38) MHz, A(87Rb,5D5/2):-7.4595(29) MHz, B(87Rb,5D5/2):1.2748(23) MHz. Isotope shift:160.630(7) MHz.
[1] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2-5D 3/2two-photon transitions in rubidium", Opt. Commun. 102, 432–438 (1993).
[2] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, "Absolute Frequency Measurement of the 2S-8S/D Transitions in Hydrogen and Deuterium: New Determination of the Rydberg Constant", Phys. Rev. Lett. 78, 440–443 (1997).
[3] A. Onae, T. Ikegami, K. Sugiyama, F. L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser", Opt. Commun. 183, 181–187 (2000).
[4] M. Poulina, C. Latrassea, D. Touahria, and M. Tetu, "Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms", Opt. Commun. 207, 233–242 (2002).
[5] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, "Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium", Opt. Commun. 108, 91–96 (1994).
[6] T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)", Metrologia 40, 103–133 (2003).
[7] A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, "Frequency stabilization of a frequency-doubled 1556-nm source to the 5S 1/2- 5D 5/2 two-photon transitions of rubidium", Opt. Lett. 25, 905–907 (2000).
[8] C. M. Wu, T. W. Liu, and W. Y. Cheng, "Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison", Phys. Rev. A 92, 042504 (2015).
[9] D. Touahri, 0. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, "Frequency measurement of the 5S 1/2 (F=3)→5D 5/2 (F=5) two-photon transition in rubidium", Opt. Commun. 133, 471–478 (1997).
[10] C S Edwards, G P Barwood, H S Margolis, P Gill, and W R C Rowley, " Development and absolute frequency measurement of a pair of 778nm two-photon rubidium standards", Metrologia 42, 464–467 (2005).
[11] O. Terra, and H. Hussein1, "An ultra‑stable optical frequency standard for telecommunication purposes based upon the 5S 1/2-5D 5/2 two‑photon transition in rubidium", Appl. Phys. B 122, 1-12 (2016).
[12] K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, "Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium", Phys. Rev. Appl. 9, 014019 (2018).
[13] G. K. Woodgate, "Elementary Atomic Structure", 2nd ed. (1980).
[14] A. Corney, "Atomic and Laser Spectroscopy", (1980).
[15] W. Demtröder, "Laser Spectroscopy 1 Basic Principles", 5nd ed. (2014).
[16] V. S. Letokhov, and V. P. Chebotayev, "Nonlinear Laser Spectroscopy",(1977).
[17] C. J. Foot, "Atomic Physics", (2015).
[18] E. D. Black, "An introduction to Pound–Drever–Hall laser frequency stabilization", Am. J. Phys. 69, 79-87(2001).
[19] F. Biraben, M. Bassini, and B. Cagnac, "Line-shapes in Doppler-free two-photon spectroscopy.The effect of finite transit time", J. Phyx. France 40, 445-455 (1979).
[20] N. D. Zameroski, G. D. Hager, C. J. Erickson , and J. H. Burke, "Pressure broadening and frequency shift of the 5S 1/2- 5D 5/2 and 5S 1/2- 7S 1/2 two photon transitions in (_^85)Rb by the noble gases and N_2", J. Phys. B: At. Mol. Opt. Phys. 47, 225205 (2014).
[21] R. Felder, D. Touahri, 0. Acef, L. Hilico, J. J. Zondy , A. Clairon, B. d. Beauvoir, F. Biraben, L. Julien, F. Nez, and Y. Millerioux, "Performance of a GaA1As laser diode stabilized on a hyperfine component of two- photon transitions in rubidium at 778 nm ", SPIE Proceedings 2378, 52-57 (1995).
[22] E. Arimondo, M. Inguscio, and P. Violino, "Experimental determinations of the hyperfine structure in the alkali atoms", Reviews of Modern Physics 49, 31 (1977).
[23] S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon, and C. Salomon, "High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain", Europhysics Letters 45, 558 (1999).
[24] K. H. Chen, C. M. Wu, S. R. Wu, H. H. Yu, T. W. Liu, and W. Y. Cheng, "Influence of atmospheric helium on secondary clocks", Opt. Lett. 45, 1-4 (2020).