跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張美菊
Mei-Chu Chang
論文名稱: 二維團簇腦神經網路之同步發火
Exploring Synchrony in a 2D Clusterized Cortical Neuronal Network in vitro
指導教授: 伊林
Lin I
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 90
中文關鍵詞: 同步發火神經網路
外文關鍵詞: synchronization, neuronal network
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究大白老鼠腦皮質層之二維腦神經網路,於低鎂離子濃度下的同步發火現象。利用鈣離子螢光染色指示計,共軛焦雷射掃瞄顯微技術,與電子倍增式影像顯微系統,使神經元網路之鈣離子動力學行為得以量測。腦皮質神經元細胞於高密度下,形成以粗大絲狀神經元捆束相互連接之三維巨大團簇,以組成二維神經元網路。因著腦神經元網路之時空異質性,此神經網路可展現豐富之同步發火動力學行為。第一,導致神經網路中,同步發火領先團簇與同步發火落後團簇之自動性發生。藉著調控團簇間之聯結強度與環境干擾程度,神經元團簇同步發火之順序可被翻轉。第二,在成長後期展現有一長時間的間歇時期與高頻同步發火動力共存,形成一緩慢之調幅效應。根據非線性動力學之分析手法,以及藥理學之實驗測試,我們提出並驗證幾種可能的機制。


    Synchronization is investigated in the two-dimensional clusterized cortical neuronal network in vitro. The firing activity of the network is stained by fluorescence calcium indicator under the depletion of magnesium ions and monitored by the confocal microscopy with 10 Hz EMCCD. At high density (» 9000 cells/mm2), neurons self-organize into the two-dimensional clusterized neuronal network interconnected by three-dimensional clusters. Due to the spatial heterogeneity of the clusterized network at high density, the cortical neuronal network has rich spatiotemporal firing dynamics. It has been identified that the envelopes of bursting neurons within clusters are synchronous. At inter-cluster level, the firing delay between clusters is investigated at fine temporal scale. The firing order between these clusters exists on 8th day in vitro (DIV). Through tuning the mutual coupling strength and stochastic noise in the environment, it is found that not only the firing delay is enhanced, but also the firing order between clusters is exchanged. As day goes by, the firing burst rate increases, because the stronger coupling strength between clusters enhance. In the presence of the spatial heterogeneous neuronal network, the slower time scale dynamics, the burst of action potential burst, is explored on 14th»17th DIV. Standing on the nonlinear dynamics, several mechanisms are proposed and verified. This phenomenon still calls for more biological assays to verify.

    Abstract i 1 Introduction 1 2 Background 6 2.1 Physical concepts of synchronization . . . . . . . . . . . . . . 6 2.2 Neurobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Biology of a neuron at cellular level . . . . . . . . . . . 10 2.2.2 Synchronization of neuronal network in vivo and in vitro 17 2.3 Review of the current theoretical and experimental works of neuronal networks . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Experiment 21 3.1 Primary cortical neuronal culture . . . . . . . . . . . . . . . . 21 3.2 Fluorescence measurement . . . . . . . . . . . . . . . . . . . . 22 3.3 Observation platform . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Result and Discussion 28 4.1 Morphology and synchronization in a 2D cortical neuronal network in vitro . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 Morphology of the neuronal network . . . . . . . . . . 28 4.1.2 Synchronization firing activities in the clusterized neuronal network in vitro . . . . . . . . . . . . . . . . . . 33 4.2 Emergency of the spontaneous master-slave clusters in the neuronal network . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 Self-organized masters in a clusterized neuronal network 37 4.2.2 Investigation of firing order under global perturbation . 42 4.3 Exploring the slow modulation at the mature stage . . . . . . 49 4.3.1 Existence of the slow modulation at high cell density . 49 4.3.2 Models for the slow modulation . . . . . . . . . . . . . 53 5 Conclusion 60 Bibliography 63 A Dissection procedures 67 B Solution preparation 74 C Fluorescence and observation of synchronous firing 78

    [1] N. Wiener. Nonlinear Problems in Random Theory. MIT, Cambridge,
    1958.
    [2] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer,
    New York, 1984.
    [3] A. T. Winfree. The Geometry of Biological Time. Springer, New York,
    2000.
    [4] S. H. Strogatz. Exploring complex networks. Nature, 410, 2001.
    [5] L. Glass. Synchronization and rhythmic processes in physiology. Nature,
    410, 2001.
    [6] H. P. C. Robinson etal. Periodic synchronized bursting and intracellular
    calcium transients elicited by low magnesium in cultured cortical
    neurons. J. Neurophysiol., 70, 1993.
    [7] E. Kandel etal. Principles of Neural Science. McGraw-Hill, 2000.
    [8] R. Segev etal. Long term behavior of lithographically prepared in vitro
    neuronal networks. Phys. Rev. Lett., 88, 2002.
    [9] R. Segev etal. Formation of electrically active clusterized neural networks.
    Phys. Rev. Lett., 90, 2003.
    [10] L. C. Jia etal. Connectivities and synchronous firing in cortical neuronal
    networks. Phys. Rev. Lett., 93, 2004.
    [11] L. M. Pceora etal. Master stability functions for synchronized coupled
    systems. Phys. Rev. Lett., 80, 1998.
    [12] M. Dhamala etal. Enhancement of neural synchrony by time delay. Phys.
    Rev. Lett., 92, 2004.
    [13] J. F. Lindner etal. Array enhanced stochastic resonance and spatiotemporal
    synchronization. Phys. Rev. Lett., 75, 1995.
    [14] T. Nishikawa etal. Heterogeneity in oscillator networks: Are smaller
    worlds easier to synchronize? Phys. Rev. Lett., 91, 2003.
    [15] M. Denker etal. Breaking synchrony by heterogeneity in complex networks.
    Phys. Rev. Lett., 92, 2004.
    [16] H. Hempel etal. Noise-sustained pulsating patterns and global oscillations
    in subexcitable media. Phys. Rev. Lett., 82, 1999.
    [17] E. M. Izhikevich. Which model to use for cortical spiking neurons?
    IEEE Transactions on Neural Networks, 15, 2004.
    [18] E. Maeda etal. The mechanisms of generation and propagation of synchronized
    bursting in developing networks of cortical neurons. J. Neurosci.,
    15, 1995.
    [19] L. M. Pecora etal. Synchronzation in chaotic systems. Phys. Rev. Lett.,
    64, 1990.
    [20] W. Horsthemke etal. Noise-Induced Transitions. Springer-Verlag,
    Berlin, 1984,, 2001.
    [21] L. Gammaitoni etal. Stochastic resonance. Rev. Mod. Phys., 70, 1998.
    [22] J. Wang etal. Noise driven avalanche behavior in subexcitable media.
    Phys. Rev. Lett., 82, 1999.
    [23] A. V. Herz etal. Earthquake cycles and neural reverberations: Collective
    oscillations in systems with pulse-coupled threshold elements. Phys. Rev.
    Lett., 75, 1995.
    [24] P. Jung etal. Noise sustained waves in subexcitable media: From chemical
    waves to brain waves. CHAOS, 8, 1993.
    [25] S. K. Han etal. Dephasing and bursting in coupled neural oscillators.
    Phys. Rev. Lett., 1995.
    [26] R. Segev etal. Observations and modeling of synchronized bursting in
    two-dimensional neural networks. Phys. Rev. E, 2001.
    [27] P. C. Bressloff etal. Desynchronization, mode locking, and bursting in
    strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 1998.
    [28] D. Smetters etal. Detecting action potentials in neuronal populations
    with calcium imaging. METHODS: A Companion to Methods in Enzymology,
    18, 1999.
    [29] R. M. fltzsimonds etal. Propagation of activity-dependent synaptic depression
    in simple neural networks. Nature, 388, 1997.
    [30] H. J. Koester etal. Calcium dynamics associated with action potentials
    in single nerve terminals of pyramidal cells in layer 2/3 of the young rat
    neocortex. J. Physiol., 529, 2000.
    [31] Wei-YenWoon etal. The slow modulation of synchronized bursting firing
    in cortical neuronal networks. Phys. Rev. E., 2006.

    QR CODE
    :::