跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭柏洋
Po-Yang Hsiao
論文名稱: 生質燃料灰渣之再利用與再處理方法探討
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 188
中文關鍵詞: 生質燃料飛灰底渣水洗燃燒研磨資源化再利用
外文關鍵詞: Heating
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是針對國內設有燃燒生質燃料之鍋爐廠,進行衍生灰渣材料特性與資源化再利用技術之可行性研究。並依國內鍋爐廠的使用現況選定兩種類之生質燃料:(1)棕櫚殼、(2)廢棄養菇太空包製成之木顆粒,依據上述兩種燃料燃燒後衍生之飛灰及底渣,進行土木材料相關之物理性質及化學性質基本檢試驗,探討其材料之特性並建立各衍生灰渣之基線資料。
    依據材料之特性採用不同之再利用可行技術並作合適性評估,以達成資源循環之最大效益。本研究所採用土木材料再利用技術包含(1)控制性低強度回填材料CLSM、(2)高壓混凝土磚以及(3)人造粒料。於各種再利用試驗結果上顯示生質燃料衍生灰渣應用於土木工程材料或水泥製品皆具有一定的再利用成效及經濟效益。
    從特性實驗結果得知,本研究使用之生質燃料飛灰中菇包飛灰具有吸水率高、殘碳量高之特性,摻配於水泥砂漿有緩凝及強度下降的現象,且變異性過大可能會影響再利用發展。本研究透過水洗的再處理方式有改善菇包飛灰緩凝的狀況。而棕櫚殼飛灰由於粒徑較粗有活性較低的現象,因此對棕櫚殼飛灰進行研磨再處理,經由砂漿試驗得出強度活性有提升的效果。另外,使用高溫燃燒飛灰的方式試圖降低飛灰的殘碳量,卻得到隨燃燒溫度提升而砂漿強度下降的結果,推論是由於過高溫度造成飛灰燒結團聚與晶相改變而強度活性指數下降的現象。


    This research aims at the derived fly ash and bottom ash which are produced by the domestic boiler plants burning biomass fuel, and clarify the properties of these waste and the feasibility of their reuses. According to the current status of the domestic boiler plant, two types of biomass fuels are selected: (1)palm kernel shells, (2) the wood pellets made of abandoned mushroom bags.
    According to the characteristics of the materials, three different reuse methods are used in this study including (1) Controlled Low Strength Material, CLSM, (2) compressed concrete bricks, and (3) artificial aggregate. The result of reuse tests shows that utilization of the biomass fuel derived ash in civil engineering materials bring about certain effectiveness and economic benefits.
    Because water absorption and loss on ignition of Mushroom bags fly ash (MFA) are high, when blending MFA in cement mortar will delay the setting time and decrease the strength. And excessive variability may affect the reuse of this kinds fly ash. In this study, using the re-treatment of washing MFA can improve the problem of setting time. The strength activity of palm kernel shells fly ash(PKSFA) are lower than the general coal fly ash due to the coarse particle size. Therefore, ground the PKSFA to increase the specific surface area, that would improve the strength activity of the blended cement mortar. That may since the agglomeration and crystallization of glassy phase of the particles occurred during the heating process.

    摘要 i ABSTRACT iii 致謝 v 目錄 vii 圖目錄 xi 表目錄 xvii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 1 1.3研究範圍 2 1.4研究方法及內容 2 1.5名稱整理 3 第二章 文獻回顧 5 2-1鍋爐與燃料 5 2-1-1鍋爐種類 5 2-1-2燃料種類 7 2-2燃煤飛灰 10 2-2-1燃煤飛灰來源 10 2-2-2燃煤飛灰基本性質 12 2-3生質燃料衍生灰渣 14 2-3-1國內生質物種類 14 2-3-2國外木質燃料灰基本性質 15 2-3-3棕櫚油燃料灰(POFA)基本性質 21 2-4灰渣再處理成效 28 2-4-1研磨與燃燒 28 2-4-2水洗 33 2-5資源化再利用 35 2-5-1控制性低強度回填材料(CLSM) 35 2-5-2高壓混凝土磚 44 2-5-3人造粒料 45 第三章 研究材料及方法 47 3-1研究材料 47 3-1-1燃料與灰渣來源介紹 47 3-1-2灰渣生產與取樣 49 3-1-3灰渣外觀概述 50 3-2研究流程 55 3-3實驗設備及方法 60 第四章 生質燃料衍生灰渣性質分析 75 4-1生質燃料衍生飛灰 75 4-1-1生質燃料飛灰之特性 75 4-1-2生質燃料飛灰之微觀分析 81 4-1-3生質燃料飛灰之水泥試驗 84 4-2生質燃料衍生底渣 90 4-2-1生質燃料底渣之特性 90 4-2-2生質燃料底渣之水泥砂漿試驗 95 4-3灰渣特性小結 99 第五章 生質燃料衍生灰渣再利用試驗 101 5-1 CLSM控制性低強度回填材料 101 5-1-1配比設計 101 5-1-2新拌性質 101 5-2高壓混凝土磚 106 5-3人造粒料 111 第六章 生質燃料飛灰再處理成效 113 6-1 研磨處理 113 6-1-1研磨細度 113 6-1-2研磨後凝結時間 118 6-1-3研磨後強度活性指數 119 6-1-4研磨前後微觀分析 121 6-2 水洗 128 6-2-1水洗流程 128 6-2-2水洗前後XRD成分分析 131 6-2-3水洗後凝結時間 133 6-2-4水洗後強度活性指數 134 6-2-5水洗前後SEM分析 136 6-3 高溫灼燒 137 6-3-1加熱方式 137 6-3-2外觀變化 138 6-3-3飛灰燃燒前後XRD 139 6-3-4飛灰燃燒前後SEM 143 6-3-5強度活性指數 145 6-4 再處理小結 146 第七章 結論與建議 147 7.1結論 147 7.2建議 149 參考文獻 150 附錄一 158  

    王世賢,「焚化爐底碴及廢混凝土塊應用於控制性低強度材料工程及環境效益評估之研究」,碩士論文,國立中央大學土木工程研究所,桃園(2005)。
    王銘澤,「生質燃料鍋爐飛灰與底渣特性分析及再利用評估」,碩士論文,國立中央大學,桃園(2017)。
    台灣電力公司:http://www.taipower.com.tw。
    余岳峰,「下水污泥焚化灰渣燒成輕質粒料特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園(2000)。
    巫宗威、戴俊地、蔡得時,「垃圾焚化爐底渣再生粒料應用之研究」,中華民國營建工程學會第十三屆營產業永續發展研討會,(2015)。
    李忠文,「焚化底渣水洗前處理及應用之探討」,碩士論文,國立中央大學,桃園(2004)。
    杜建蒼,「焚化底碴處理技術與處理廠營運管理之研究」,碩士論文,國立中央大學, 桃園(2014)。
    車廣傑,「混凝土緩凝劑的分類及其作用機理」,黑龍江科技信息,2009(10)。
    林凱隆、林忠逸、王鯤生、林家宏,「磷酸鹽含量對廢棄污泥燒製環保水泥之水化特性影響」,環境保護,27卷2期,pp. 204 – 217,(2004)。
    紀宗男,「淨水污泥餅資源化應用於管溝回填材料之研究」,碩士論文,淡江大學,台北(2003)。
    翁頤慶,「造粒-乾燥技術」,醫藥工程設計,第二期,(1998)。
    張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥,生質燃料應用評估與示範,行政院環境保護署環境檢驗所,(2013)。
    許桂銘,「飛灰輕質粒料製程及性質之研究」,碩士論文,國立台灣工業技術學院,台北(1991)。
    陳建棋,「燃煤飛灰與底灰應用於CLSM之早強性質研究」,碩士論文,國立中興大學,台中(2002)。
    森展企業有限公司: http://www.soundbell.com.tw/tc/p3_product.php
    黃華照,「偏高嶺土輕質粒料混凝土應用於海洋工程」,碩士論文,國立中山大學,高雄(2006)。
    經濟部工業局,區域能資源整合暨效能提升示範輔導計畫,鏈條式鍋爐生質燃料試燒結果說明,(2016)
    萬皓鵬.李宏台,廢棄物衍生燃料的使用(2010)。
    Abdullah, K., Hussin, M.W., Zakaria, F., Muhamad, R., and Hamid, Z.A. (2006), “POFA : A Potential Partial Cement Replacement Material in Aerated Concrete.” 6th Asia-Pacific Structural Engineering and Construction Conference. Kuala Lumpur, pp. 132-140.
    Abdullahi, M. (2006), “Characteristics of Wood ASH/OPC Concrete.” Civil Engineering Department, Federal University of Technology, P.M.B. 65.
    Altwair, N.M., Johari, M.A.M., and Hashim, S.F.S. (2011), “Strength Activity Index and Microstructural Characteristics of Treated Palm Oil Fuel Ash.” International Journal of Civil & Environmental Engineering, Vol. 11, pp. 100-107.
    Ariffin, M.A.M., Hussin, M.W., and Bhutta, M.A.R. (2011), “Mix Design and Compressive Strength of Geopolymer Concrete containing Blended Ash from Agro-Industrial Wastes.” Advanced Materials Research, Vol. 339, pp. 452-457.
    Awal, A.S.M.A., and Hussin, M.W. (2011), “Effect of Palm Oil Fuel Ash in Controlling Heat of Hydration of Concrete.” Procedia Engineering, Vol. 14, pp. 2650-2657.
    Awal, A.S.M.A., and Hussin, M.W.(1997), “The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction.” Cement and Concrete Composites, Vol. 19, pp. 367-372.
    Awal, A.S.M.A., and Nguong, S.K. (2010), “A Sort-term Investigation on High Volume Palm Oil Fuel Ash (POFA) Concrete.” 35th Conference on OUR WORLD IN CONCRETE & STRUCTURES. Singapore2010.
    Awal, A.S.M.A., and Shehu, I.A. (2011), “Properties of Concrete Containing High Volum Palm Oil Fuel Ash.” Malaysian Journal of Civil Engineering, Vol. 23, pp. 54-66.
    Awal, A.S.M.A., and Shehu, I.A. (2013), “Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash.” Fuel, Vol. 105, pp. 728-731.
    Bamaga, S., Ismail, M.A., and Hussin, M.W. (2010), “Chloride Resistance of Concrete Containing Palm Oil Fuel Ash.” Concrete Research Letters, Vol. 1, pp. 158-166.
    Chandara, C., Sakai, E., Azizli, K.A.M., Ahmad, Z.A., and Hashim, S.F.S. (2010), “The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer.” Construction and Building Materials, Vol. 24, pp. 1590-1593.
    Chindaprasirt, P., and Rukzon, S. (2009), “Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation.” Journal of Materials in Civil Engineering, Vol. 21, pp. 666-671.
    Chindaprasirt, P., Chotetanorm, C., and Rukzon, S. (2011), “Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete.” Journal of Materials in Civil Engineering, Vol. 23, pp. 499-503.
    Chindaprasirt, P., Homwuttiwong, S., and Jaturapitakkul, C. (2007), “Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash.” construction and Building Materials, Vol. 21, pp. 1492-1499.
    Chindaprasirt, P., Rukzon, S., and Sirivivatnanon, V. (2008), “Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash.” Construction and Building Materials, Vol. 22, pp. 932-938.
    Cuenca, J., Rodriguez, J., Martin-Morales, M., Sanchez-Roldan, Z., and Zemorano, M. (2013), “Effects of olive residue biomass fly ash as filler in self-compacting concrete.” Construction and Building Materials, Vol. 40, pp. 702-709.
    Elinwa, A.U., and Mahmood, Y.A. (2002), “Ash from timber waste as cement replacement material.” Cement and Concrete Composites, Vol. 24, pp.219-222.
    Ellinwa, A.U., and Mahmood, Y.A. (2002), “Ash from timber waste as cement replacement.” Cement Concr Compos, Vol.24, pp. 219-222.
    Ellinwa, A.U., Ejeh, S.P., and Akapabio, I.O. (2005), “Effects of incorporation of saw dust incineration fly ash in cement pastes and mortars.” J Asian Architect Build Eng, Vol. 3, pp. 1-7.
    Etiegni, L., and Campbell, A.G. (1991), “Physical and chemical characteristics of wood ash.” Bioresource Technol, Vol. 37, pp. 173-178.
    Hussin, M.W., Ismail, M.A., Budiea, A., and Muthusamy, K. (2009), “Durability of High Strength Conctere Containing Palm Oil Fuel Ash of Different Fineness.” Malaysian Journal of Civil Engineering, Vol. 21, pp. 180-194.
    Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W., and Saeting, T. (2007), “Evaluation of the sulfate resistance of concrete containing palm oil fuel ash.” Construction and Building Materials, Vol. 21, pp. 1399-1405.
    Jaturapitakkul, C., Tangpagasit, J., Songmue, S., and Kiattikomol, K. (2011), “Filler effect and pozzolanic reaction of ground palm oil fuel ash.” construction and Building Materials, Vol. 25, pp. 4287-4293.
    Johari, M.A.M., Zeyad, A.M., Bunnori, N.M., and Ariffin, K.S. (2012), “Engineering and transport properties of highstrength green concrete containing high volume of ultrafine palm oil fuel ash.” Construction and Building Materials, Vol. 30, pp. 281-288.
    Kroehong, W., Sinsiri, T., and Jaturapitakkul, C. (2011), “Effect of Palm Oil Fuel Ash Fineness on Packing Effect and Pozzolanic Reaction of Blended Cement Paste.” Procedia Engineering, Vol. 14, pp. 361-369.
    Lee, C.Y., Lee, H.K., Lee, K.M.(2003), “Strength and microstructural characteristics of chemically activated fly ash–cement systems.” Cement and Concrete Research, Vol 33, Issue 3, pp. 425-431.
    Lim, N.H.A.S., Ismail, M.A, Lee, H.S., Hussin, M.W., Sam, R.M., and Samadi, M. (2015), “The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar.” Construction and Building Materials, Vol. 93, pp. 29-34.
    Mounanga, P., Khelidj, A., Loukili, A., Baroghel-Bouny, V.(2004), “Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach”, Cement and Concrete Research, Vol 34, Issue 2, pp. 255-265.
    Naik, T.R., Kraus, R.N., and Siddique, R. (2003), “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215.
    Noorvand, H., Ali, A.A.A., Demirboga, R., Noorvand, H., and Farzadnia, N. (2013), “Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica.” Construction and Building Materials, Vol. 48, pp. 1104-1113
    Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M.W., and Khankhaje, E.(2016), “Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement.” Construction and Building Materials, Vol.116, pp. 15-24.
    Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M. (2009), “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060.
    Rukzon, S., and Chindaprasirt, P. (2009), “An Experimental Investigation of the Carbonation of Blended Portland Cement Palm Oil Fuel Ash Mortar in an Indoor Environment .” Indoor and Built Environment, Vol. 18, pp. 313-318.
    Safiuddin, M., Md.Isa, M.H., and Jumaat, M.Z. (2011), “Fresh Properties of Self-consolidating Concrete Incorporating Palm Oil Fuel Ash as a Supplementary Cementing Material.” Journal of Science Chiang Mai, Vol. 38, pp.389-404.
    Sata, V., Jaturapitakkul, C., and Kiattikomol, K. (2004), “Utilization of Palm Oil Fuel Ash in High-Strength Concrete.” Journal of Materials in Civil Engineering, Vol. 16, pp. 623-628.
    Sata, V., Jaturapitakkul, C., and Kiattikomol, K. (2007), “Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete.” Construction and Building Materials, Vol. 21, pp. 1589-1598.
    Sata, V., Jaturapitakkul, C., and Rattanashotinunt, C. (2010), “Compressive Strength and Heat Evolution of Concretes Containing Palm Oil Fuel Ash.” Journal of Materials in Civil Engineering, Vol. 22, pp. 1033.1038.
    Sinsiri, T., Kroehong, W., Jaturapitakkul, C., and Chindaprasirt, P. (2012), “Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste.” Materials and Design, Vol. 42, pp. 424-433.
    Sklivaniti, V., Tsakiridis, P.E., Katsiotis, N.S., Velissariou, D., Pistofidis, N., Papageorgiou, D., and Beazi, M. (2017), “Valorisation of woody biomass bottom ash in Portland cement: A characterization and hydration study.” Journal of Environmental Chemical Engineering, Vol.5, pp. 205-213.
    Sujivorakul, C., Jaturapitakkul, C., ASCE, A.M., and Taotip, A. (2011), “Utilization of Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash in Glass Fiber–Reinforced Concrete.” Journal of Materials in Civil Engineering, Vol. 23, pp. 1281-1288.
    Tangchirapat, W., and Jaturapitakkul, C. (2010), “Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash.” Cement and Concrete Composites, Vol. 32, pp. 767-774.
    Tangchirapat, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009), “Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete.” Construction and Building Materials, Vol. 23, pp. 2641-2646.
    Tangchirapat, W., Jaturapitakkul, C., and Kiattikomol, K. (2009), “Compressive Strength and Expansion of Blended Cement Mortar Containing Palm Oil Fuel Ash.” Journal of Materials in Civil Engineering, Vol. 21, pp. 426-431.
    Tangchirapat, W., Khamklai, S., and Jaturapitakkul, C. (2012), “Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates.” Materials and Design, Vol. 41, pp. 150-157.
    Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., and Siripanichgorn, A. (2007), “Use of waste ash from palm oil industry in concrete.” Waste Management, Vol. 27, pp. 81-88.
    Udoeyo, F.F., and Dashibil, P.U. (2002), “Sawdust ash as concrete material.” J Mater Civ Eng, Vol. 14, pp.173-176.
    Ukrainczyk, N., Ukrainczyk, M., Sipusic, J., and Matusinovic, T.(2006), “XRD and TGA investigation of hardened cement paste degradation.” 11th Conference on Material, Processes, Friction and Wear, MATRIB’06, Vela Luka, pp. 22-24.
    Vassilev, S.V., Baxter, D., Andersen, L.K., and Vassileva, C.G. (2010), “An overview of the chemical composition of biomass.” Fuel, Vol. 89, pp. 913-933.

    QR CODE
    :::