| 研究生: |
鄒宜勳 Yi-Syun Chou |
|---|---|
| 論文名稱: |
以靜電紡絲技術製備鈦酸鈷/銀複合奈米纖維於表面增強拉曼散射之研究 Study on Surface Enhanced Raman Scattering of CoTiO3/Ag Composite Nanofibers Fabricated by Electrospinning Method |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 靜電紡絲 、鈦酸鈷 、表面增強拉曼散射 |
| 外文關鍵詞: | electrospinning, CoTiO3,, surface-enhanced Raman scattering |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增強拉曼散射 (SERS) 於近幾年已發展成為一個超靈敏的檢測分析工具,並用於各種不同的領域,但是要邁向商品化最大的挑戰為穩定的製程以及如何製作具有高再現性、高穩定度、高靈敏度且可重複使用的SERS基板,因此本研究致力於使用具有高介電常數的CoTiO3作為基板進一步提升SERS的增強效果。
本研究利用靜電紡絲法 (Electrospinning method) 經由不同退火溫度製作CoTiO3/Ag複合奈米纖維,探討其SERS效應,結果顯示經過退火700℃後的奈米纖維表面有明顯的奈米銀顆粒,當入射光照射時會在金屬表面產生表面電漿共振並形成高度增強的近場,拉曼散射光也因此增強數十至數百倍,所以有最強的SERS強度,其SERS強度與濃度呈線性關係,可用來做未知濃度的測定,且本研究製作的SERS基板具有可靠度,並可經由去離子洗滌後重複使用。最後我們進一步將CoTiO3/Ag複合奈米纖維製備成具有較高機械強度的螺旋結構,降低奈米銀顆粒之間的距離以增強SERS效果並提高實用性。
In recent years, surface-enhanced Raman scattering (SERS) has become an ultrasensitive analytical tools, which could be widely applied in various fields. However, the major challenge of towards commercialization is to establish a reliable and reusable SERS-active substrates with high reproducibility, and sensitivity. Taking the above considerations into account, this study focus on the fabrication of CoTiO3/Ag composite nanofibers and study on their SERS performances.
In this study, we fabricate CoTiO3/Ag composite nanofibers by using the electrospinning method. We also compare the SERS activities of CoTiO3/Ag-nanofiber substrates which were annealed at different temperatures. The results show that Ag nanoparticles were obviously formed on the nanofibers after annealing at 700℃, showing the highest SERS performance. This is because when the irradiation of incident light causes the surface plasma resonance on the metal surface and forms a highly enhanced near-field, leading to the enchantment of Raman scattering intensity by times of tens to hundreds. Since its SERS intensity and concentration exhibits a linear relationship, it can be used to determine the measuring concentration. We also find that the resulting SERS-active substrates are uniform and can be reused after being washed only by deionized water. Finally, we further twist nanofibers to form the helical structure with high mechanical strength. It not only reduces the distance between Ag nanoparticles to enhance the SERS performance, but also increases their mechanical strength to be widely applied for more applications.
[1] X. Zhang, B. Lu, R. Li, C. Fan, Z. Liang, and P. Han, “Structural, electronic and optical properties of Ilmenite ATiO3 (A= Fe, Co, Ni),” Materials Science in Semiconductor Processing, 39, 6-16 (2015).
[2] J. Jiang, J. Luo, J. Zhu, X. Huang, J. Liu, and T. Yu, “Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries,” Nanoscale, 5, 8105-8113 (2013).
[3] F. Schoofs, M. Egilmez, T. Fix, J. L. MacManus-Driscoll, and M. G. Blamire, “Structural and magnetic properties of CoTiO3 thin films on SrTiO3 (001),” Journal of Magnetism and Magnetic Materials, 332, 67-70 (2013).
[4] M. Siemons and U. Simon, “Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method,” Sensors and Actuators B: Chemical, 126, 595-603 (2007).
[5] J. Lu, Y. Jiang, Y. Zhang, J. Huang, and Z. Xu, “Preparation of gas sensing CoTiO3 nanocrystallites using EDTA as the chelating agent in a sol–gel process,” Ceramics International, 41, 3714-3721 (2015).
[6] Y. Brik, M. Kacimi, M. Ziyad, and F. Bozon-Verduraz, “Titania-supported cobalt and cobalt–phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation,” Journal of catalysis, 202, 118-128 (2001).
[7] T. M. Pan, T. F. Lei, and T. S. Chao, “High-k cobalt-titanium oxide dielectrics formed by oxidation of sputtered Co/Ti or Ti/Co films,” Applied Physics Letters, 78, 1439-1441 (2001).
[8] Y. Xu and M. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” American Mineralogist, 85, 543-556 (2000).
[9] F. Pacheco, M. Gonzalez, A. Medina, S. Velumani, and J. Ascencio, “Structural analysis of cobalt titanate nanoparticles obtained by sol–gel process,” Applied Physics A, 78, 531-536 (2004).
[10] X. Chu, X. Liu, G. Wang, and G. Meng, “Preparation and gas-sensing properties of nano-CoTiO3,” Materials research bulletin, 34, 1789-1795 (1999).
[11] M. Enhessari, A. Parviz, K. Ozaee, and E. Karamali, “Magnetic properties and heat capacity of CoTiO3 nanopowders prepared by stearic acid gel method,” Journal of Experimental Nanoscience, 5, 61-68 (2010).
[12] A. E. Henkes, J. C. Bauer, A. K. Sra, R. D. Johnson, R. E. Cable, and R. E. Schaak, “Low-temperature nanoparticle-directed solid-state synthesis of ternary and quaternary transition metal oxides,” Chemistry of materials, 18, 567-571 (2006).
[13] H. He, “Synthesis and characterisation of CoTiO3 powders prepared via sol–gel method,” Powder Metallurgy, 51, 224-226 (2008).
[14] Y.-J. Lin, Y.-H. Chang, W.-D. Yang, and B.-S. Tsai, “Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method,” Journal of Non-Crystalline Solids, 352, 789-794 (2006).
[15] S. H. Chuang, R. H. Gao, D. Y. Wang, H. P. Liu, L. M. Chen, and M. Y. Chiang, “Synthesis and Characterization of Ilmenite‐Type Cobalt Titanate Powder,” Journal of the Chinese Chemical Society, 57, 932-937 (2010).
[16] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature, 121, 501-502 (1928).
[17] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics reports, 409, 47-99 (2005).
[18] Y. Huang, L. Sun, K. Xie, Y. Lai, B. Liu, B. Ren, et al., “SERS study of Ag nanoparticles electrodeposited on patterned TiO2 nanotube films,” Journal of Raman Spectroscopy, 42, 986-991 (2011).
[19] E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” The Journal of Physical Chemistry C, 111, 13794-13803 (2007).
[20] Y. Wang, X. Zhao, L. Chen, S. Chen, M. Wei, M. Gao, et al., “Ordered Nanocap Array Composed of SiO2-Isolated Ag Islands as SERS Platform,” Langmuir, 30, 15285-15291 (2014).
[21] M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, 26, 163-166 (1974).
[22] D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20 (1977).
[23] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society, 99, 5215-5217 (1977).
[24] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical review letters, 78, 1667 (1997).
[25] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” Journal of Physics: Condensed Matter, 14, R597 (2002).
[26] L. Guerrini and D. Graham, “Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications,” Chemical Society Reviews, 41, 7085-7107 (2012).
[27] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, et al., “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” Journal of the American Chemical Society, 130, 12616-12617 (2008).
[28] L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chemical Society Reviews, 37, 1061-1073 (2008).
[29] B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Materials today, 15, 16-25 (2012).
[30] M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of modern physics, 57, 783 (1985).
[31] 吳民耀、劉威志, “表面電漿子理論與模擬,” 物理雙月刊, 廿八卷二期, 2006).
[32] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, et al., “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chemical reviews, 111, 3669-3712 (2011).
[33] A. Barbara, F. Dubois, A. Ibanez, L. M. Eng, and P. Quémerais, “SERS Correlation Spectroscopy of Silver Aggregates in Colloidal Suspension: Quantitative Sizing Down to a Single Nanoparticle,” The Journal of Physical Chemistry C, 118, 17922-17931 (2014).
[34] 黃茜、張曉丹、紀偉, “Al2O3薄膜/奈米Ag顆粒複合結構的光吸收譜及增強Raman散射光譜研究,” 物理學報, 第59卷第4期, 2010).
[35] J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine: Nanotechnology, Biology and Medicine, 6, 214-226 (2010).
[36] F. Wang, R. G. Widejko, Z. Yang, K. T. Nguyen, H. Chen, L. P. Fernando, et al., “Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles,” Analytical chemistry, 84, 8013-8019 (2012).
[37] J.-M. Li, W.-F. Ma, C. Wei, L.-J. You, J. Guo, J. Hu, et al., “Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly (styrene-co-acrylic acid) nanospheres as novel active substrates,” Langmuir, 27, 14539-14544 (2011).
[38] Z. Wang, G. Meng, Z. Huang, Z. Li, and Q. Zhou, “Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates,” Nanoscale, 6, 15280-15285 (2014).
[39] Y. He, S. Su, T. Xu, Y. Zhong, J. A. Zapien, J. Li, et al., “Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection,” Nano Today, 6, 122-130 (2011).
[40] G. Yang, W. Yan, J. Wang, and H. Yang, “Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning,” Materials Letters, 122, 117-120 (2014).
[41] Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, 298, 2176-2179 (2002).
[42] S. Mondal, U. Rana, and S. Malik, “Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate,” ACS applied materials & interfaces, 2015).
[43] 卢靖, 黄剑锋, 吴建鹏, and 冀涛, “制备工艺对钛酸钴纳米粉体结晶性能和显微结构的影响,” 硅酸盐学报, 39, 1531-1535 (2011).
[44] V. Hadjiev, M. Iliev, and I. Vergilov, “The Raman spectra of Co3O4,” Journal of Physics C: Solid State Physics, 21, L199 (1988).
[45] R. Kullock, W. R. Hendren, A. Hille, S. Grafström, P. R. Evans, R. J. Pollard, et al., “Polarization conversion through collective surface plasmons in metallic nanorod arrays,” Optics express, 16, 21671-21681 (2008).
[46] M. J. Natan, “Concluding remarks surface enhanced Raman scattering,” Faraday discussions, 132, 321-328 (2006).
[47] D. Li, Y. Wang, and Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,” Nano letters, 3, 1167-1171 (2003).
[48] B. K. Gu, M. K. Shin, K. W. Sohn, S. I. Kim, S. J. Kim, S.-K. Kim, et al., “Direct fabrication of twisted nanofibers by electrospinning,” Applied Physics Letters, 90, 263902 (2007).