跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張志豪
Chih-Hao Chang
論文名稱: 機器學習應用於樣版網頁擷取之研究
A Machine Learning Based Approach to WebExtraction from Template Pages
指導教授: 張嘉惠
Chia-Hui Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 33
中文關鍵詞: 機器學習
外文關鍵詞: machine learning
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網際網路包含大量的資料,其中深網(Deep Web)所提供的大量結構性資料,
    相較於表層網路(Surface Web)所提供的資訊有更高的價值。然而深網藉由共同
    閘道介面(CGI)所提供給人們查詢的方式並不適合程式的讀取,因此對於資訊的
    整合來說,如何從查詢所得的網頁中擷取所要的資料,是存在十多年的挑戰。其
    中的技術發展也從監督式的資料擷取方法到非監督式的資料擷取方法,並從主要
    資料擷取(Data Rich Section Data Extraction) 進化到全頁式的資料擷取
    (Page-level Data Extraction)。非監督式的資料擷取方法主要透過相似的網頁
    結構反向推導其產生模型使用的HTML 樣板以及資料模型,由於同樣的HTML 標籤
    可能用以呈現不同的資訊,因此自動推論最大的困難點便在於如何辨識相同
    HTML 標籤是否代表不同的意義。本篇論文應用機器學習方法來判斷網文件物件
    模型樹(DOM Tree)中的兩個HTML 標籤是否為同儕節點(Peer Node),藉以改善
    非監督式的資料擷取方法FiVaTech 推論網頁樣板(Template)及資料結構
    (Schema)的準確度。此分類器採用HTML 標籤資訊、視覺化資訊、文字內容資訊
    等三類做為分類器的特性。另外我們同時也利用比對顯示在瀏覽器上HTML 標籤
    的影像來輔助樣版的判斷。實驗結果顯示,採用J48 分類器對於Peer Node 的辨
    識可以逹到90%左右的準確率,同時對於資料結構的準確度也有20%的改善,顯
    示此方法的可行之處。


    A huge amount of information on the World Wide Web has a
    structured HTML form as they are generated dynamically from databases
    and have the same template. This paper proposes a page-level web data
    extraction system FiVaTech2 that extracts schema and templates from
    these template-based web pages automatically. The proposed system,
    FiVaTech2, is an extension to our previously page-level web data
    extraction system FiVaTech. FiVaTech2 uses a machine learning (ML)
    based method which compares HTML tag pairs to estimate how likely
    they present in the web pages. We use one of the ML techniques called
    J48 decision tree classifier and also use image comparison to assist
    templates detection. Each HTML tag in the web page has several features
    that can be divided into the three types: visual information, DOM tree
    information, and HTML tag contents. Our experiments show an
    encouraging result for the test pages when combinations of the three
    types of tag features are used. Also, our experiments show that FiVaTech2
    performs better and has higher efficiency than FiVaTech.

    FiVaTech2 .............................................................................................................. 1 A Machine Learning Based Approach to Web Data Extraction from Template Pages .................. 1 Contents ................................................................................................................. 2 List of Figures ........................................................................................................... 3 List of Tables............................................................................................................ 4 1 Introduction ................................................................................................... 1 2 Related Works ................................................................................................ 4 2.1 Approaches using DOM tree information ........................................ 4 2.2 Approaches using visual information .............................................. 5 2.3 Approaches using token occurrence frequency ................................ 5 2.4 Machine Learning Tool ................................................................. 6 3 FiVaTech ........................................................................................................ 7 3.1 Definitions ................................................................................. 7 3.2 FiVaTech Tree Merging ................................................................ 9 3.3 Schema Detection ..................................................................... 11 4 FiVaTech2 .................................................................................................... 12 4.1 Filtering Out Template Blocks in the Inputed DOM Trees ................ 13 4.2 Peer Nodes Recognition ............................................................. 16 4.2.1 Decorative tag comparison .................................................. 16 4.2.2 Decision Tree for Peer Node Recognition ............................... 18 4.2.3 Decision Tree Attributes ...................................................... 19 4.2.4 Accuracy by Different HTML Tag Tree Levels .......................... 21 4.2.5 Accuracy by Different Data Regions ...................................... 22 4.2.6 Accuracy by Number of Training Sites ................................... 23 4.2.7 Accuracy by Number of Training Node Pairs ........................... 25 5 Experiments ................................................................................................. 27 6 Conclusions and Future Works ........................................................................ 31 References ............................................................................................................. 32

    [1] C.-H. Chang, C.-N. Hsu, S.-C. Lui: IEPAD:Information extraction based on pattern discovery.
    WWW-10,pp.223-231, 2001
    [2] C.-H. Chang, M. Kayed, M. R. Girgis, K. F. Shaalan: A Survey of Web Information Extraction
    System. IEEE TKDE(SCI, EI),Vol. 18,No.10,pp.1411-1428, 2006
    [3] M. Kayed, C.-H. Chang, FiVaTech: Page-Level Web Data Extraction from Template Pages, IEEE
    TKDE, vol. 22, no. 2, pp. 249-263, Feb. 2010.
    [4] S. Sarawagi. Automation in Information Extraction and Data Integration (Tutorial). Proceedings
    of the 2002 International Conference on Very Large Data Base (VLDB), 2002.
    [5] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. T. Yu: Fully automatic wrapper generation for search
    engines. WWW 2005: 66-75
    [6] H. Zhao, W. Meng and Z. Wu, V. Raghavan, C. Yu Automatic Extraction of Dynamic Record
    Sections From Search Engine Result Pages. VLDB, pp.989-1000, 2006
    [7] K. Simon, G. Lausen: ViPER: augmenting automatic information extraction with visual
    perceptions. CIKM 2005: 381-388
    [8] W. Liu, X.-F. Meng, W.-Y. Meng. Vision-Based Web data records extraction. In: Proc. of the 9th
    SIGMOD Int’l Wor shop on Web and Databases (WebDB 2006). Chicago: ACM Press, 2006.
    [9] W. Liu, X.-F. Meng, W.-Y. Meng. ViDE: A Vision-based Approach for Deep Web Data
    Extraction. Transactions on Knowledge and Data Engineering, IEEE, 2007
    [10] J. Hammer, J. McHugh, and H. Garcia-Molina, "Semistructured Data: The TSIMMIS
    Experience," Proc. First East-European Symp. Advances in Databases and iformation Systems
    (ADBIS), pp. 1-8,1997.
    [11] L. Liu, C. Pu, and W. Han, "XWRAP: an XML-enabled wrapper construction system for Web
    information sources," in Data Engineering, 2000. Proceedings. 16th International Conference
    on,2000, pp. 611-621.
    33
    [12] D. Freitag, "Information Extraction from HTML: Application of a General Learning Approach,"
    1998.
    [13] H. F. L. Alberto, R.-N. Berthier, and S. d. S. Altigran, "DEByE - Date extraction by example,"
    Data Knowl. Eng., vol. 40, pp. 121-154, 2002.
    [14] N. Kushmerick, "Wrapper induction for information extraction," University of Washington, 1997,
    p. 246.
    [15] ME. Califf, RJ. Mooney, "Relational Learning of Pattern-Match Rules for Information
    Extraction," University of Texas at Austin 1998.
    [16] C.-H. Chang and S.-C Kuo, "Olera: semisupervised Web-data extraction with visual support,"
    Intelligent Systems, vol. 19, pp. 56-64, 2004.
    [17] A. Arasu and H. Garcia-Molina, "Extracting structured data from Web pages," in Proceedings of
    the 2003 ACM SIGMOD international conference on management of data San Diego, California:
    ACM,2003.
    [18] V. Crescenzi, G. Mecca, P. Merialdo. "RoadRunner: Towards Automatic Data Extraction from
    Large Web Sites," in Proceedings of the 27th International Conference on Very Large Data
    Bases: Morgan Kaufmann Publishers Inc., 2001.
    [19] B. Liu, R. Grossman. Y. Zhai. “Mining data records from Web pages.” KDD-03, 2003.
    [20] Y. Zhai and B. Liu, "Web data extraction based on partial tree alignment," in Proceedings of the
    14th international conference on World Wide Web Chiba, Japan: ACM, 2005.
    [21] J. Wang, F. H. Lochovsky. Data extraction and label assignment for web databases. WWW 2003:
    187-196
    [22] B. Liu and Y. Zhai. NET – A System for Extracting Web Data from Flat and Nested Data
    Records. WISE Conference, 2005.
    [23] http://www.cs.waikato.ac.nz/ml/weka/
    [24] http://www.bing.com/

    QR CODE
    :::