| 研究生: |
柯俊宏 Jun-hong Ke |
|---|---|
| 論文名稱: |
鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究 Zr-based and Ti-based Metallic Glass Thin Film Coatings for Fatigue-Property Improvement of 7075-T6 Aluminum Alloy |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 金屬玻璃薄膜 、四點彎曲 、疲勞性質 、7075鋁合金 |
| 外文關鍵詞: | Metallic Glass Thin Film, Four-Point-Bending, Fatigue, 7075 Aluminum Alloy |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討7075-T6高強度鋁合金基材披覆鋯基(Zr53Cu30Ni9Al8)99.5Si0.5與鈦基(Ti40Zr10Cu36Nb7Co7)金屬玻璃薄膜應用於抗疲勞性質改善之研究。首先,我們探討鋯基金屬玻璃薄膜厚度對於7075-T6鋁合金疲勞之效果,選擇一最佳膜厚再與相同膜厚之鈦基金屬玻璃進行比較,以研究不同系統之金屬玻璃薄膜成分對於其疲勞性質之影響。而實驗結果發現鋯基金屬玻璃薄膜厚度提升其疲勞性質改善會逐漸減退,疲勞限由披覆200 nm之235 MPa至500 nm之205 MPa明顯降低,這是由於表面粗糙度逐漸提升所導致。此外,濺鍍200 nm鋯基與鈦基金屬玻璃薄膜之疲勞限相較於鋁合金基材提升56.7 %與43.3 %,在250 MPa之交變應力下,鋯基與鈦基金屬玻璃薄膜之疲勞壽命則分別為5.4×10^6次與1.6×10^6次,相較於鋁合金基材之2.0×10^5次高出近26.3倍與7.9倍,而披覆200 nm厚之鋯基金屬玻璃薄膜在表面粗糙度與附著性皆優於鈦基金屬玻璃,因此披覆200 nm之鋯基金屬玻璃為7075-T6鋁合金抗疲勞鍍膜之最佳選擇。
Due to the high specific ratios of strength to weight of 7075 aluminum alloy, it is widely used in light weight sport equipment, automobile bodies, and aircraft frames. However, the 7075 aluminum alloy has poor fatigue property in comparison to steel. In this study, different thicknesses (namely 200, 300, 400, and 500 nm) of Zr-based ((Zr53Cu30Ni9Al8)99.5Si0.5) and 200 nm Ti-based (Ti40Zr10Cu36Nb7Co7) metallic glass thin films (MGTF) were successfully coated on the 7075 aluminum alloy substrates by DC-sputtering method. Then the fatigue properties of these coated and as-polished samples were tested following the standard of ASTM-C1161-02c. The results revealed that the fatigue life and fatigue strength show an opposite trend with increasing the thickness of MGTF due to the changes of surface roughness and residual stress. The sample coated with 200-nm-thick Zr-based MGTF is found to have the best fatigue properties than others thickness-coated samples. Moreover, the fatigue life of 7075-T6 aluminum alloy can be improved about 26.3 and 7.9 times than the bare one at the high stress level of 250 MPa by coating with 200 nm-thick Zr-based and Ti-based MGTF. In parallel, the improvements of Zr-based and Ti-based MGTF-coated samples in fatigue strength were 235 MPa (56.7 %) and 205 MPa (43.3 %) compared with as-polished sample (150 MPa).
Based on the TEM examination, the formation of offsets and cracks from the surface of specimen was revealed to be effectively restricted by both MGTF coatings. This is attributed to the high strength, good flexibility, and strong adhesion of both MGTF coatings, which can provide effective compressive stress to suppress the slip band protruding. In summary, Zr-based MGTF coating is believed to be a promising coating material for improving 7075-T6 aluminum fatigue properties.
[1] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, P. D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films”, Materials Science and Engineering: A, Vol. 468-470, p. 250, 2007.
[2] W. Liu, M. Bayerlein, H. Mughrabi, A. Day, P. N. Quested, “Crystallographic features of intergranular crack initiation in fatigued copper polycrystals”, Acta Metallurgica et Materialia, Vol. 40, p. 1763, 1992.
[3] R. D. Conner, Y. Li, W. D. Nix, W. L. Johnson, “Shear band spacing under bending of Zr-based metallic glass plates”, Acta Metallurgica et Materialia, Vol. 52, p. 2429, 2004.
[4] R. D. Conner, W. L. Johnson, “Shear bands and cracking of metallic glass plates in bending”, Journal of Applied Physics, Vol. 94, p. 904, 2003.
[5] W. H. Jiang, G. J. Fan, H. Choo, P. K. Liaw, “Ductility of a Zr-based bulk-metallic glass with different specimen's geometries” , Materials Letters, Vol. 60, p. 3537, 2006.
[6] F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu, R. A. Buchanan, “Specimen-geometry effects on mechanical behavior of metallic glasses”, Intermetallics, Vol. 14, p. 1014, 2006.
[7] G. Y. Wang, P. K. Liaw, Y. Yokoyama, A. Inoue, C. T. Liu, “Fatigue behavior of Zr-based bulk-metallic glasses”, Materials Science and Engineering: A, Vol. 494, pp. 314-323, 2008.
[8] F. X. Liu, C. L. Chiang, J. P. Chu, Y. F. Gao, P. K. Liaw, “Effects of Glass-Forming Metallic Film on the Fatigue Behavior of C-2000 Ni-Based Alloy”, Materials Research Society Symposium Proceedings, Vol. 903E, p. 13.3, 2006.
[9] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, “A 200 nm Thick Glass-Forming Metallic Film for Fatigue-Property Enhancements”, Applied Physical Letters, 88, pp. 131902, 2006.
[10] Y. Z. Chang, P. H. Tsai, J. B. Li, H. C. Lin, J. S. C. Jang, C. Li, G. J. Chen, Y. C. Chen, J. P. Chu, P. K. Liaw, “Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy” , Thin Solid Films, Vol. 544, pp. 331-334, 2013.
[11] P. H. Tsai, J. B. Li, Y. Z. Chang, H. C. Lin, J. S. C. Jang, J. P. Chu, J. W. Lee, P. K. Liaw, “Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating”, Thin Solid Films, Vol. 561, pp. 28-32, 2014.
[12] A. C. Lund, C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, p. 4817, 2004.
[13] 戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,1984年。
[14] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction(3rd ed.)”, Prentice-Hall, p. 183, 2001.
[15] G. P. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar, G. L. Goswami, et al., “Structural relaxation in metallic glasses”, Materials Science and Engineering: A, Vol. 304-306, 31, pp. 499-504, 2001.
[16] V. H. Hammond, M. D. Houtz, J. M. O’Reilly, “Structural relaxation in a bulk metallic glass”, Journal of Non-Crystalline Solids, Vol. 325, pp. 179-186, 2003.
[17] Y. W. Kim, H. M. Lin, T. F. Kelly, “Amorphous solidification of pure metals in submicron spheres”, Acta Metallurgica, Vol. 37, pp. 247-255, 1989.
[18] J. R. Scully, A. Gebert, J. H. Payer, “Corrosion and related mechanical properties of bulk metallic glasses”, Journal of Materials Research, Vol. 22, pp. 302-303, 2007.
[19] J. Kramer, “Non-conducting modifications of metals”, Annalen der Physik, Vol. 19, p. 37, 1934.
[20] A. Brenner, D. E. Couch, E. K. Williams, “Electrodeposition of alloys of phosphorus with nickel or cobalt”, Journal of Research of the National Bureau of Standards, Vol.44, p. 109, 1950.
[21] S. J. Savage, F. H. Froes, “Production of Rapidly Solidified Metals and Alloys”, Journal of Metals, Vol. 36, pp. 20-30, 1984.
[22] Klement, R. H. Wilens, P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, Vol. 187, p. 869, 1960.
[23] H. S. Chen, C. E. Miller, “A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids”, Review of Scientific Instruments, Vol. 41, p. 1237, 1970.
[24] H. S. Chen, “Glassy metals”, Reports on Progress in Physics, Vol. 43, pp. 363-364, 1980.
[25] 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149期,pp. 154-159,1999.
[26] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rate (Overview)”, Materials Transactions, Journal of Immunological Methods, Vol. 36, p. 866, 1995.
[27] A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials: preparation, properties, and applications”, Springer, Vol. 3 pp. 1-55, 2001.
[28] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering: A, Vol. 226-228, p. 357, 1997.
[29] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Materials Transactions, JIM, Vol. 32, pp. 609-616, 1991.
[30] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Materials Transactions, JIM, Vol. 33, pp. 937-945, 1992.
[31] A. Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, p. 2342, 1993.
[32] C. Y. Haein, D. C. Robert, S. Frigyes, L. J. William, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, Vol. 45, pp. 1039-1045, 2001.
[33] K. Takenaka, T. Wada, N. Nishiyama, H. Kimura, A. Inoue, “New Pd-Based Bulk Glassy Alloys with High Glass-Forming Ability and Large Supercooled Liquid Region”, Materials Transactions, Vol. 46, pp. 1720-1724, 2005.
[34] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, Vol. 59, pp. 2243-2267, 2011.
[35] A. Inoue, “Recent Progress of Zr-Based Bulk Amorphous Alloys”, Science Reports of the Research Institutes, Tohoku University, Ser. A 42, p. 2, 1996.
[36] Robert E., Reed-hill and Reza Abbaschian, Physical Metallurgy Principles, 3rd Ed., PWS Publishing Company, Boston, 1994.
[37] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, pp. 279-306, 2000.
[38] C. Suryanarayana, A. Inoue, “Bulk Metallic Glasses”, Boca Raton (FL): CRC Press, pp. 61-167, 2011.
[39] J. S. C. Jang, Y. W. Chen, L. J. Chang, H. Z. Cheng, C. C. Huang, C. Y. Tsau, “Crystallization and fracture behavior of the Zr65-xAl7.5Cu17.5Ni10Six bulk amorphous alloys”, Materials Chemistry and Physics, vol. 89, pp. 122-129, 2005.
[40] J. S. C. Jang, S. R. Jian, C. F. Chang, L. J. Chang, Y. C. Huang, T. H. Li, J. C. Huang, C. T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, vol. 478, pp. 215-219, 2009.
[41] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, p. 086108, 2007.
[42] G. N. Jackson, “R.F. Sputtering”, Thin Solid Films, Vol.5, p. 210, 1970.
[43] K. L. Chopra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[44] S. G. Wang, J. Xu, “Strengthening and toughening of Mg-based bulk metallic glass via in-situ formed B2-type AgMg phase”, Journal of Non-Crystalline Solids, Vol. 379, p. 40, 2013.
[45] J. Tan, Y. Zhang, M. Stoic, “Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass”, Intermetallics, Vol. 19, pp. 567-570, 2011.
[46] J. B. Li, J. S. C. Jang, C. Li, S. R. Jian, P. H. Tsai, J. D. Hwang, J. C. Huang, T. G. Nieh, “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles”, Materials Science and Engineering: A, Vol. 551, p. 249, 2012.
[47] B. Zberg, P. J. Uggowitzer, J. F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, Vol. 8, pp. 887-890, 2009.
[48] 李正中著作,薄膜光學與鍍膜技術,藝軒出版社,第二版,2001年。
[49] H. T. Michels, J. O. Noyce, C. W. Keevil, “Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper”, Letters in Applied Microbiology, Vol. 49, p. 191, 2009.
[50] P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, J.P. Chu, J. C. Huang, “Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating”, Intermetallics, Vol.31, p. 127, 2012.
[51] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, “Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4 thin film metallic glasses on escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, acinetobacter baumannii and candida albicans”, Fooyin Journal of Health Sciences, Vol. 2, p. 12, 2010.
[52] J. P. Chu, J. E. Greene, J. S. C. Jang, J. C. Huang, Y. L. Shen, P. K. Liaw, Y. Yokoyama, A. Inoue, T. G. Nieh, “Bendable Bulk Metallic Glass: Effects of a Thin, Adhesive, Strong, and Ductile Coating”, Acta Materialia, vol. 60, pp. 3226-3238, 2012.
[53] L. K. Berg, J. Gjønnes, V. Hansen, X. Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L. R. Wallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging”, Vol. 49, p. 3443, 2001.
[54] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1961.
[55] ASTM C1161-02c, “Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2008.
[56] ASTM D3359-02, “Standard Test Methods for Measuring Adhesion by Tape Test”, 2004.
[57] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, C. Rullyani, “Thin film metallic glasses: Unique properties and potential applications”, Vol. 520, pp. 5115-5116, 2012.