| 研究生: |
劉衾瑋 Chin-Wei Liu |
|---|---|
| 論文名稱: |
鋁合金薄板片氣壓成形製程之成形性 與精準度研究 |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 快塑成形 、金屬外殼 、鋁合金 、脫模機構設計 、尺寸公差 |
| 外文關鍵詞: | metal shell, demoulding mechanism design, dimensional accuracy |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前在工業上超塑成形以氣壓成形法最普遍,近年由美國通用汽車公司(General Motors, GM)以超塑成形為基底而開發一種名為快塑成形的鈑片加工技術。本論文將快塑成形(Quick Plastic Forming, QPF)技術應用於製造金屬外殼,主要分為成形性與精準度的研究與探討。成形性研究採用了一般商用與超塑性的鋁合金鈑片進行實驗,藉由成形性測試、分析厚度與微觀結構觀察,來探討此製程是否具有製作金屬外殼的優勢,並評估適宜的材料。研究結果顯示在單次的氣壓成形製程中當成形時間在40秒以上時,模具的設計為影響鈑片能否完全成型的主要原因。綜合研究結果可推斷,透過減少模具中模厚度後,便可使用非超塑性5083板材來成形;並且進一步採用更薄之商用材料來達到降低成本的效果。
在精準度研究中,首先改進量具在夾持工件的設計並確認工件量測數值,進而討論量具形式的量測可靠度與重現性,並再確保量測數值的可靠與穩定與否,再對已成形鈑片之尺寸公差與取出方式進行探討。因在成形性研究中所使用之捲曲造型金屬外殼模具,其具有製程時間過長與成品品質不穩定等因素。故於重新設計模具並增加脫模拉桿機構,希望有效改善製程效率與尺寸精度。讓氣壓成形製程更具有經濟效應與市場競爭力在金屬機殼的製造。研究結果顯示,使用機構取出方式能大幅降低製程時間與提升生產效率,間接降低模具溫度的散失。尺寸公差方面,統整三套模具所得到的尺寸量測數值,使用標準差計算出公差等級,得到氣壓成形製程為IT10到IT14,其IT公差範圍與CNC 切削和沖壓加工相近,說明此製程在金屬機殼製作上具備一定的商業價值。
This thesis focuses on applies the Quick Plastic Forming (QPF) technology to the manufacture of metal shells, which is mainly divided into the research and discussion of formability and accuracy. The formability research uses commercial and superplastic aluminum alloy sheet for experiments. Formability testing observed thickness and microstructure, to explore whether this process has the advantages of making a metal shell, and to evaluate the material of the sheet. The research results show that the design of the mold is the reason that affects whether the sheet can be completely formed. Comprehensive research results can be inferred that when the thickness of the middle mold is reduced through the improved design of the mold, general commercial sheet materials can be used for forming.
In the study of dimensional accuracy of QPF, first improve the design of the measuring tool and the dimensional tolerance and the extraction method of the work piece are discussed. Due to the shallow rounded die affect, the process time is weak and the quality of the finished product is unstable. Therefore, the die was redesigned and the demolding mechanism was added. The research results show that the proposed mechanism can significantly decrease the process time, because it replaces most of the operations of specimen movement after forming completely. In terms of dimensional tolerances, the standard deviation is used to calculate the tolerance level, and the tolerance level of the quick plastic forming process is IT10 to IT14. The IT tolerance range covers the scope of CNC cutting and stamping processing, indicating that this process has certain commercial value in the production of metal casings.
[1] O.D. Sherby and J. Wadsworth, “Observations on historical and contemporary developments in superplasticity”, Mater Res Soc Symp Proc, Vol 196, pp.3-14, Materials Research Society, 1990.
[2] CE Pearson, “The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin”, J Inst Met, Vol 54, pp.111-124, 1934.
[3] EE Underwood, “A review of superplasticity”, J Metals, Vol 14, pp. 914-919, 1962.
[4] WA Backofen, IR Turner and DH Avery, “Superplasticity in an Al-Zn alloy”, ASM Trans Quart, Vol 57, pp.980-990, 1964.
[5] D.G. Sanders, “The Current State-of-the Art and the Future of in Airframe manufacturing using Superplastic Forming Technology”, Materials Science Forum, Vol 357-359, p.17-22, 2001.
[6] L.D. Hefti, “Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet”, Journal of Materials Engineering and Performance, Vol 16, pp.136-141, 2007.
[7] P. E. Krajewski and J. G. Schroth, “Overview of Quick Plastic Forming Technology”, Materials Science Forum, Vol 551-552, pp.3-12, 2007.
[8] JG Schroth, HM Brueggeman and NP Grewal, “Quick plastically formed aluminum doors”, J Mater Eng Perform, Vol 16, pp.339-348, 2007.
[9] M.H. Shojaeefard, A. Khalkhali and E. Miandoabchi, “Effect of process parameters on superplastic forming of a license plate pocket panel”, Int J Adv Des Manuf Technol, Vol 7, pp.25-33, 2014.
[10] S Lee, YH Chen and JY Wang, ” Isothermal sheet formability of Mg alloy AZ31 and AZ61”, J Mater Process Technol, Vol 124, pp.19-24, 2002.
[11] Z. Zeng, Y. Zhang, Y. Zhou, and Q. Jin, ” Superplastic Forming of Aluminum Alloy Car Body Panels”, Materials Science Forum, Vol 475-479, pp. 3025-3028, 2005.
[12] Y. Luo, S.G. Luckey, W.B. Copple, and P.A. Friedman, “Comparison of Advanced SPF Die Technologies in the Forming of a Production Panel”, Journal of Materials Engineering and Performance, Vol 17, pp.142-152, 2008.
[13] Furukawa-Sky Aluminum Corp, “Superplastic 5083 Aluminum alloy Sheet ‘‘ALNOVI-1’’ was Approved by Airbus”, Furukawa Rev., Vol 26, pp.60-61, 2004.
[14] H. Raman, G. Luckey, G. Kridli, and P. Friedman, “Development of Accurate Constitutive Models for Simulation of Superplastic Forming”, Journal of Materials Engineering and Performance, Vol 16, pp.284-292, 2007.
[15] A.K. Ghosh and C.H. Hamilton, “Superplastic Forming and Diffusion Bonding”, SPF/DB workshop Taipei, pp.205-213, 1990.
[16] C.H. Hamilton, “NATO/AGARD Lecture Series”, No.168, Superplasticity, Chap2, 1989.
[17] F. Yang & W. Yang, “Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions”, Scripta Materialia, Vol 61, pp. 919-922, 2009.
[18] C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho and J.C. Huang, “Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing”, Materials Characterization, Vol 61, pp.1043-1053, 2010.
[19] J.W. Edington, K.N. Melton and C.P. Cutler, “Superplasticity”, Progress In Mat Sci., Vol.21, No2, pp.61, 1976.
[20] C.H Hamilton, A.K Ghosh and J.A. Wert, “Metals Form”, Vol 8, No.4, pp.172-190, 1985.
[21] O.A. Kaibyshev, A.I. Pshenichniuk and V.V. Astanin, “Superplastic resulting from cooperative grain boundary sliding”, Acta mater., Vol 46, No. 14, pp.491,1998.
[22] J Carpenter and M. T. Smith, “Quick Plastic Forming of Aluminum Sheet Metal”, December, 2005, EERE Information Center, U.S. Department of Energy, www.eere.energy.gov
[23] P. E. Krajewski and J. G. Schroth, “Superplastic Forming of Advanced Metallic Materials”, Methods and Applications, Woodhead Publishing Limited., 2011.
[24] M.A. Kulas, P.E. Krajewski, J.R. Bradley, E.M. Taleff, “Forming Limit Diagrams for AA5083 under SPF and QPF Conditions”, Materials Science Forum, Vol. 551-552, pp.129-134, 2007.
[25] 孫稟厚, “鎂合金 AZ31 細晶薄板片拉伸性質與氣壓成形特性研究”, 國立中央大學, 博士論文, 民國100.
[26] A. K. Mukherjee and R. S. Mishra, “Superplasticity”, Encyclopedia of Materials: Science and Technology (Second Edition), pp.8977-8981, 2001.
[27] F. Ozturk, S. Toros, S. Kilic, “Evaluation of tensile properties of 5052 type aluminum-magnesium alloy at warm temperatures”, Archives of Materials Science and Engineering, Vol 34, pp.95-98, 2008.
[28] S. Vetrano, C.A. Lavender, C.H. Hamilton, M.T. Smith and S.M. Bruemmer, “SUPERPLASTIC BEHAVIOR IN A COMMERCIAL 5083 ALUMINUM ALLOY”, Scripta Metallurgica et Materialia, Vol 30, pp.565-570, 1994.
[29] D. R. Askeland, P.P. Fulay, W.J. Wright, “The Science and Engineering of Materials, 6e”, Cengage Learning, 2011.
[30] R.E. Sanders, “Technology Innovation in Aluminium Products”, The Journal of The Minerals, Vol 53, No.2, pp.21-25, 2001.
[31] P. T. Summers, Y. Chen, C. M. Rippe, B. Allen, A. P. Mouritz, S. W. Case, B. Y. Lattimer, “Overview of aluminum alloy mechanical properties during and after fires”, Fire Science Reviews, 2015.
[32] 張暘青, “民航客機機翼前緣整流罩之超塑成形材料研究”, 國立中央大學, 碩士論文, 民國100年.
[33] 毛國芳, “品質管制利器--製程能力指標(Cpk)” ,台肥季刊第五十四卷第 1 期,中華民國 102 年.
[34] 鄭春生, “品質管理現代觀念與實務應用”, 五版, 全華圖書, 台北, 2018年.
[35] Erik Oberg, Franklin D. Jones, Holbrook L. Horton, and Henry H.Ryffel, “Machinery’s Handbook 26’th Edition”, Industrial Press, Inc., 2000.
[36] Geometrical product specifications, “ISO code system for tolerances on linear sizes Part 1: Basis of tolerances”, deviations and fits (ISO 286-1:2010)
[37] S. Kalpakjian, S. Schmid “Manufacturing Engineering and Technology”, Seventh Edition, Pearson, USA, 2013
[38] T. Lieneke, V. Denzera, G. A. O. Adama and D. Zimmera, “Dimensional tolerances for additive manufacturing:Experimental investigation for Fused Deposition Modeling”, CIRP, Vol 43, pp.286-291, 2016.
[39] K. Kitsakis, J. Kechagias1, N. Vaxevanidis and D.Giagkopoulos, “Tolerance Analysis of 3d-MJM parts according to IT grade”,20th IManEE, Vol 161, 2016.
[40] M.N. Islam, B. Boswell & A. Pramanik, “Dimensional Accuracy Achievable by Three-Dimensional Printing”, IAENG Transactions on Engineering Sciences, In: Sio-Iong Ao, Alan Hoi-Shou Chan, Hideki Katagiri, Li Xu (ed.) IAENG Trans Eng Sci. London: Taylor & Francis, 2013.
[41]小栗富士雄、小栗達男,”標準機械設計圖表便覽”, 第五版,眾文圖書,2013。