| 研究生: |
洪維鍾 Wei-chung Hung |
|---|---|
| 論文名稱: |
基於散佈式耦合饋入架構實現多頻雙工器設計 |
| 指導教授: |
凃文化
Wen-hua Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 雙工器 |
| 外文關鍵詞: | diplexer |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中利用散佈式耦合的饋入技術與步階式阻抗共振器(stepped-impedance resonator, SIR)實現了多頻雙工器的設計,由於散佈式耦合的饋入技術的低負載效應,因此不需要複雜的匹配網路來設計多頻帶的電路。
本論文前三個電路分別為雙頻雙工器、三頻雙工器和四頻雙工器,電路架構包含了二分之一波長步階式阻抗共振器、共用的輸入饋入線和輸出饋入線。每個通帶皆由一對共振器控制可增加設計自由度,由於散佈式耦合饋入技術的低負載效應,使得每個通帶可以分別設計再將其整合在一起。此三個電路皆具有高隔離度及寬止帶的特性,在隔離度的部分可以達到29 dB以上,20-dB止帶可達到7.6倍的最低操作中心頻率。
在最後一個電路中,利用散佈式耦合饋入架構與兩對步階式阻抗共振器設計雙頻雙頻器,其中每一對共振器分別設計兩個通帶,進而達到面積縮小的效果,且通道間的隔離度仍保持在29 dB以上。
Distributed coupling technique and stepped-impedance resonators is employed to realize multi-band diplexer. Due to the low loading effect from distributed coupling technique, the proposed circuits can design many channels without the use of complicated matching network.
The first three circuits include a dual-band diplexer, tri-band diplexer and quad-band diplexer. The circuits consist of half-wavelength stepped-impedance resonators, a common feeding line and output feeding lines. Each passband is controlled by respective pair of resonators to increase design freedom. Due to the low loaded effect, each passband can be design respectively, and finally combine bandpass filters into multi-band diplexers. The circuits have high isolation and wide stopband performance. The isolation is more than 29 dB and the 20-dB stopband up to 7.6 × the lowest operation center frequency.
In last circuit, distributed coupling technique and two pairs of stepped-impedance resonators is employed to realize dual-band diplexer. Each pairs of resonator is designed to a dual-band performance, so the circuit size can be smaller than before. The channel isolation is more than 29 dB.
[1] J.-T. Kuo and H.-P. Lin, “Dual-band bandpass filter with improved performance in extended upper rejection band,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824–829, Apr. 2009.
[2] P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[3] X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[4] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling scheme,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[5] Y.-C. Chang, C.-H. Kao, M.-H. Weng, R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, December 2009.
[6] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri- section SIR, ” Electron. Lett., vol. 44, no. 4, pp. 295–296, Feb. 2008.
[7] C.-I G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[8] F.-C. Chen, Q.-X. Chu and Z.-H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol. 44, no. 12, pp. 747–749, Jun. 2008.
[9] H.-W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol 21, no.4, pp. 203–205, Apr. 2011.
[10] S.-C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[11] K.-W. Hsu and W.-H. Tu, “Design of a novel four-band microstrip bandpass filter using double-layered substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp. 1041–1044.
[12] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters, ” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 142–144, Mar. 2010.
[13] C.-F. Chen, “Design of a compact microstrip quint-band filter base on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, Jul. 2012.
[14] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 11, pp. 583-585, Nov. 2011.
[15] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May 2006.
[16] P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C. H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4185–4192, Dec. 2006.
[17] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848–856, Apr. 2011.
[18] J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173–175, Apr. 2012.
[19] C.-F. Cheng, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Comp. Lett., vol. 21, no. 10, pp. 534–536, October 2011.
[20] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol.21, no.4, pp.197–199, Apr. 2011.
[21] T.-Y. Yun, C. Wang, P. Zepeda, C. T. Rodenbeck, M. R. Coutant, M.-Y. Li, and K. Chang, “A 10- to 21-GHz low-cost, multifrequency, and full-duplex phased-array antenna system”, IEEE Trans. Antennas Propag., vol. 50, no. 5, pp.641–650, May 2002.
[22] S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370−1378, Apr. 2006.
[23] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818−1820, Oct. 2001.
[24] Y. Ning, “A new multiple-frequency millimeter diplexer using microstrip periodic-stub,” IET International Conference on Wireless Mobile and Multimedia Networks Proceedings (ICWMMN 2006), Hangzhou, China, Nov. 2006, pp. 335−337.
[25] H.-W. Wu, S.-H. Huang and Y.-F. Chen, “Design of new quad-channel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240–242, May. 2013.
[26] D. Zayniyev and D. Budimir, “Microstrip three-port 4-channel multiplexers using dual-band bandpass filters for wireless application,” in Proc. IEEE Int. AP-S Symp. San Diego, CA, Jul. 2008, pp. 1−4.
[27] M. L. Lai and S. K. Jeng, “A microstrip three-port and four-channel multiplexer for WLAN and UWB coexistence,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3244–3250, Oct. 2005.
[28] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[29] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.