跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何熙鈞
Hsi-Chun Ho
論文名稱: 全纖維式可撓、透明壓電獵能器及自供電式穿戴形變感測器
All-fiber based highly flexible optically transparent piezoelectric harvester for self-powered wearable deformation sensor.
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 64
中文關鍵詞: 近場電紡織技術奈米發電機聚偏氟乙烯纖維自供電式形變感測器全纖維式可撓且透明壓電獵能器
外文關鍵詞: Near-field electrospinning (NFES), Nanogenerator (NG), Polyvinylidene fluoride (PVDF), Self-powered deformation sensor, All-fiber based transparent piezoelectric harvester (ATPH)
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用近場電紡織技術(near-field electrospinning,NFES)研究壓電奈米纖維,製作成壓電獵能器及形變感測器,主要重點為(1)製作奈米發電機(nanogenerator,NG)/形變感測器,並研究不同電極密度對輸出之影響,(2)利用乾式轉印技術將Au-coated纖維轉印至聚二甲基矽氧烷 (polydimethylsiloxane,PDMS)上,完成具可撓且透明的電極,(3)將透明電極結合近場電紡織技術,開發出全纖維式可撓、透明壓電獵能器。以直寫(direct-write)方式將壓電高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用NFES技術將微/奈米纖維(micro/nanofibers,MNFs)大面積排列在可撓性基底上製作成奈米發電機,並且進行一系列訊號量測與驗證。我們將奈米發電機/形變感測器固定於人體關節(手指、腳踝)上運用關節移動來產生訊號,且可區分不同動作之訊號。最後作出全纖維式可撓、透明壓電獵能器,將其同方向捲成圓柱狀獵能器,研究圓柱狀直徑對協同增強效應之影響。


    This thesis mainly research on fabrication of nanogenerator (NG), piezoelectric technology and application in electrospinning. The focus of the study is (1) A flexible, self-powered deformation sensor based on NG (2) Pattern transfer of aligned Au-coated nano wires as flexible transparent electrode using electrospun nanofibers template, (3) All-fiber transparent piezoelectric harvester with a cooperatively enhanced structure. We demonstrate a direct-write, in-situ poled polyvinylidene fluoride (PVDF) micro/nanofibers (MNFs) arrays that could functions as a self-powered active deformation sensor. The device could easily detect, and also discriminate, various human motions related to the extension and flexion of the ankle. Furthermore, we demonstrated a highly-flexible all-fiber based transparent piezoelectric harvester (ATPH). Cooperatively enhanced effect was also demonstrated in ATPHs performance improvement by rolling the device to a cylindrical shape.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1-1電紡織技術 1 1-2奈米發電機 2 1-3 論文架構 5 第二章 自供電式穿戴形變感測器 6 2-1導論 6 2-2實驗 6 2-2-1 電紡織溶液 6 2-2-2 電紡織設備架構 7 2-2-3 直寫方式奈米發電機/形變感測器製作 8 2-3結果與討論 9 第三章 可排列Au-coated纖維乾式轉印成可撓性與高透光性之全纖維式透明電極 18 3-1 導論 18 3-2 實驗 19 3-2-1 實驗樣品 19 3-2-2 濺鍍條件 19 3-3結果與討論 19 第四章 全纖維式可撓、透明壓電獵能器 28 4-1導論 28 4-2實驗 28 4-2-1 電紡織溶液 28 4-2-2 透明電極基板 29 4-3結果與討論 29 第五章 結論 43 參考文獻 44 實驗儀器 49

    [1] T. Kowalewski, S. Blonski, S. Barral, Bull. Pol. Acad. Sci.: Tech. Sci., 2005, 53, 385.
    [2] F. L. Zhou, R. H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
    [3] G. Taylor, Proc. R. Soc. London, Ser. A, 1964, 280, 383.
    [4] A. L. Yarin, E. Zussman, Polymer , 2004, 45, 2977.
    [5] J. D. Schiffman, C. L. Schauer, Biomacromolecules, 2007, 8, 2665.
    [6] F. L. Zhou, R. H. Gong, I. Porat, J. Mater. Sci., 2009, 44, 5501.
    [7] H. Na, Q. Li, H. Sun, C. Zhao, X. Yuan1, Polym. Eng. Sci., 2009, 10, 1002.
    [8] A. Salim, C. Son, B. Ziaie, Nanotechnology, 2008, 19, 375303.
    [9] Z. Ding, A. Salim, B. Ziaie, Langmuir, 2009, 25, 9648.
    [10] Y. K. Fuh, L. C. Lien, S. C. Jang, Micro Nano Lett., 2012, 7, 376.
    [11] J. Chang, L. Lin, Transducers, 2011, 747.
    [12] K. Gao, X. Hu, C. Dai, T. Yi, J. Mater. Sci. Eng. B, 2006, 131, 100.
    [13] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, S. Gopukumar, Appl. Phys. A: Mater. Sci. Process., 2009, 97, 811.
    [14] D. Sun, C. Chang, S. Li, L. Lin, Nano Lett., 2006, 6, 839.
    [15] C. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett., 2008, 93, 123111.
    [16] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Nano Lett.,2010, 10, 726.
    [17] S. Priya, Appl. Phys. Lett., 2005, 87,184101.
    [18] S. Roundy, P. Wright, Smart Mater. Struct., 2004, 13,1131.
    [19] Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang, Nano Lett., 2010, 10, 5025.
    [20] J. Chang, M. Dommer, C. Chang, L. Lin, Nano Energy, 2012, 1,356.
    [21] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett., 2010, 10, 3151.
    [22] Y. Qin, X. D. Wang, Z. L. Wang, Nature, 2008, 451, 809.
    [23] R. S. Yang, Y. Qin, L. M. Dai, Z. L. Wang, Nat. Nanotechnol., 2009, 4, 34.
    [24] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol., 2010, 5, 366.
    [25] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, Z. L. Wang, Nano Lett., 2011, 11, 2572.
    [26] M. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong, Z. L. Wang, Energy Environ. Sci., 2011, 4, 3359.
    [27] Z. L. Wang, J. H. Song, Science, 2006, 312, 242.
    [28] X. Chen, S. Xu, N. Yao, Y. Shi, Nano Lett., 2010, 10, 2133.
    [29] M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, Z. L. Wang, Adv. Mater., 2012, 24,1759.
    [30] S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park, Z. L. Wang, Adv. Funct. Mater., 2013, 23, 2445.
    [31] A. F. Yu, P. Jiang, Z. L. Wang, Nano Energy, 2012, 1, 3.
    [32] S. N. Cha, S. M. Kim, H. J. Kim, J. Y. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, B. L. Choi, J. J. Park, Z. L. Wang, J. M. Kim, K. Kim, Nano Lett., 2011, 11, 5142.
    [33] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science, 2007, 316, 102.
    [34] Y. F. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, Z. L. Wang, Adv. Mater., 2011, 23, 4068.
    [35] R. Zhang, L. Lin, Q. Jing, W. Wu, Y. Zhang, Z. Jiao, L. Yan, P. S. Han, Z. L. Wang, Energy Environ. Sci., 2012, 5, 8528.
    [36] C. Sun, J. Shi, D. J. Bayerl, X. Wang, Energy Environ. Sci., 2011, 4, 4508.
    [37] Z. T. Li, Z. L. Wang, Adv. Mater., 2011, 23, 1.
    [38] N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramolf, E. Sioresa, Energy Environ. Sci., 2014, 7, 1670.
    [39] L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, D. Pisignano, Adv. Mater., 2014, 26, 7574.
    [40] Y. Qi, N. T. Jafferis, K. Lyons Jr, C. M. Lee, H. Ahmad, M. C. McAlpine, Nano Lett., 2010, 2, 524.

    [41] H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, Nano Letts., 2010, 4242.
    [42] Y. Yang, L. Wang, H. Yan, S. Jin, T. J. Marks, S. Li, Appl. Phys. Lett., 2006, 89, 051116.
    [43] Kittle C Introduction to Solid State Physics, Wiley, New York, 1996.
    [44] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima., Nat. Nanotechnol., 2010, 5, 574.
    [45] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 2009, 457, 706.
    [46] J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T. J. Marks, Nano Lett., 2006, 6, 11, 2472.
    [47] Y. Yang, L. Wang, H. Yan, S. Jin, T. J. Marks, S. Li, Appl. Phys. Lett., 2006, 051116.
    [48] Y. K. Fuh, L. C. Lien, Nanotechnology, 2013, 24, 055301.
    [49] JCPDS database entry No. 42-1638.
    [50] W. M. Prest, D. J. Luca, J. Appl. Phys., 1978, 49, 5042.
    [51] R. Gregorio, M. Cestari, J. Polym. Sci., Part B: Polym. Phys., 1994, 32, 859.
    [52] N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramolf, E. Sioresa, Energy Environ. Sci., 2014, 7, 1670.
    [53] Y. K. Fuh, L. C. Lien, S.C. Jang, Micro Nano Lett., 2012, 7, 376.
    [54] R. Yang, Y. Qin, C. Li, L. Dai, Z. L. Wang, Appl. Phys. Lett., 2009, 94, 022905.
    [55] J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, D. E. Kim, T. Lee, Adv. Mater., 2015, 27, 2433.

    QR CODE
    :::