| 研究生: |
何熙鈞 Hsi-Chun Ho |
|---|---|
| 論文名稱: |
全纖維式可撓、透明壓電獵能器及自供電式穿戴形變感測器 All-fiber based highly flexible optically transparent piezoelectric harvester for self-powered wearable deformation sensor. |
| 指導教授: |
傅尹坤
Yiin-Kuen Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 近場電紡織技術 、奈米發電機 、聚偏氟乙烯纖維 、自供電式形變感測器 、全纖維式可撓且透明壓電獵能器 |
| 外文關鍵詞: | Near-field electrospinning (NFES), Nanogenerator (NG), Polyvinylidene fluoride (PVDF), Self-powered deformation sensor, All-fiber based transparent piezoelectric harvester (ATPH) |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用近場電紡織技術(near-field electrospinning,NFES)研究壓電奈米纖維,製作成壓電獵能器及形變感測器,主要重點為(1)製作奈米發電機(nanogenerator,NG)/形變感測器,並研究不同電極密度對輸出之影響,(2)利用乾式轉印技術將Au-coated纖維轉印至聚二甲基矽氧烷 (polydimethylsiloxane,PDMS)上,完成具可撓且透明的電極,(3)將透明電極結合近場電紡織技術,開發出全纖維式可撓、透明壓電獵能器。以直寫(direct-write)方式將壓電高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用NFES技術將微/奈米纖維(micro/nanofibers,MNFs)大面積排列在可撓性基底上製作成奈米發電機,並且進行一系列訊號量測與驗證。我們將奈米發電機/形變感測器固定於人體關節(手指、腳踝)上運用關節移動來產生訊號,且可區分不同動作之訊號。最後作出全纖維式可撓、透明壓電獵能器,將其同方向捲成圓柱狀獵能器,研究圓柱狀直徑對協同增強效應之影響。
This thesis mainly research on fabrication of nanogenerator (NG), piezoelectric technology and application in electrospinning. The focus of the study is (1) A flexible, self-powered deformation sensor based on NG (2) Pattern transfer of aligned Au-coated nano wires as flexible transparent electrode using electrospun nanofibers template, (3) All-fiber transparent piezoelectric harvester with a cooperatively enhanced structure. We demonstrate a direct-write, in-situ poled polyvinylidene fluoride (PVDF) micro/nanofibers (MNFs) arrays that could functions as a self-powered active deformation sensor. The device could easily detect, and also discriminate, various human motions related to the extension and flexion of the ankle. Furthermore, we demonstrated a highly-flexible all-fiber based transparent piezoelectric harvester (ATPH). Cooperatively enhanced effect was also demonstrated in ATPHs performance improvement by rolling the device to a cylindrical shape.
[1] T. Kowalewski, S. Blonski, S. Barral, Bull. Pol. Acad. Sci.: Tech. Sci., 2005, 53, 385.
[2] F. L. Zhou, R. H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
[3] G. Taylor, Proc. R. Soc. London, Ser. A, 1964, 280, 383.
[4] A. L. Yarin, E. Zussman, Polymer , 2004, 45, 2977.
[5] J. D. Schiffman, C. L. Schauer, Biomacromolecules, 2007, 8, 2665.
[6] F. L. Zhou, R. H. Gong, I. Porat, J. Mater. Sci., 2009, 44, 5501.
[7] H. Na, Q. Li, H. Sun, C. Zhao, X. Yuan1, Polym. Eng. Sci., 2009, 10, 1002.
[8] A. Salim, C. Son, B. Ziaie, Nanotechnology, 2008, 19, 375303.
[9] Z. Ding, A. Salim, B. Ziaie, Langmuir, 2009, 25, 9648.
[10] Y. K. Fuh, L. C. Lien, S. C. Jang, Micro Nano Lett., 2012, 7, 376.
[11] J. Chang, L. Lin, Transducers, 2011, 747.
[12] K. Gao, X. Hu, C. Dai, T. Yi, J. Mater. Sci. Eng. B, 2006, 131, 100.
[13] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, S. Gopukumar, Appl. Phys. A: Mater. Sci. Process., 2009, 97, 811.
[14] D. Sun, C. Chang, S. Li, L. Lin, Nano Lett., 2006, 6, 839.
[15] C. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett., 2008, 93, 123111.
[16] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Nano Lett.,2010, 10, 726.
[17] S. Priya, Appl. Phys. Lett., 2005, 87,184101.
[18] S. Roundy, P. Wright, Smart Mater. Struct., 2004, 13,1131.
[19] Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang, Nano Lett., 2010, 10, 5025.
[20] J. Chang, M. Dommer, C. Chang, L. Lin, Nano Energy, 2012, 1,356.
[21] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett., 2010, 10, 3151.
[22] Y. Qin, X. D. Wang, Z. L. Wang, Nature, 2008, 451, 809.
[23] R. S. Yang, Y. Qin, L. M. Dai, Z. L. Wang, Nat. Nanotechnol., 2009, 4, 34.
[24] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol., 2010, 5, 366.
[25] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, Z. L. Wang, Nano Lett., 2011, 11, 2572.
[26] M. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong, Z. L. Wang, Energy Environ. Sci., 2011, 4, 3359.
[27] Z. L. Wang, J. H. Song, Science, 2006, 312, 242.
[28] X. Chen, S. Xu, N. Yao, Y. Shi, Nano Lett., 2010, 10, 2133.
[29] M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, Z. L. Wang, Adv. Mater., 2012, 24,1759.
[30] S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park, Z. L. Wang, Adv. Funct. Mater., 2013, 23, 2445.
[31] A. F. Yu, P. Jiang, Z. L. Wang, Nano Energy, 2012, 1, 3.
[32] S. N. Cha, S. M. Kim, H. J. Kim, J. Y. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, B. L. Choi, J. J. Park, Z. L. Wang, J. M. Kim, K. Kim, Nano Lett., 2011, 11, 5142.
[33] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science, 2007, 316, 102.
[34] Y. F. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, Z. L. Wang, Adv. Mater., 2011, 23, 4068.
[35] R. Zhang, L. Lin, Q. Jing, W. Wu, Y. Zhang, Z. Jiao, L. Yan, P. S. Han, Z. L. Wang, Energy Environ. Sci., 2012, 5, 8528.
[36] C. Sun, J. Shi, D. J. Bayerl, X. Wang, Energy Environ. Sci., 2011, 4, 4508.
[37] Z. T. Li, Z. L. Wang, Adv. Mater., 2011, 23, 1.
[38] N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramolf, E. Sioresa, Energy Environ. Sci., 2014, 7, 1670.
[39] L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, D. Pisignano, Adv. Mater., 2014, 26, 7574.
[40] Y. Qi, N. T. Jafferis, K. Lyons Jr, C. M. Lee, H. Ahmad, M. C. McAlpine, Nano Lett., 2010, 2, 524.
[41] H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, Nano Letts., 2010, 4242.
[42] Y. Yang, L. Wang, H. Yan, S. Jin, T. J. Marks, S. Li, Appl. Phys. Lett., 2006, 89, 051116.
[43] Kittle C Introduction to Solid State Physics, Wiley, New York, 1996.
[44] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima., Nat. Nanotechnol., 2010, 5, 574.
[45] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 2009, 457, 706.
[46] J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T. J. Marks, Nano Lett., 2006, 6, 11, 2472.
[47] Y. Yang, L. Wang, H. Yan, S. Jin, T. J. Marks, S. Li, Appl. Phys. Lett., 2006, 051116.
[48] Y. K. Fuh, L. C. Lien, Nanotechnology, 2013, 24, 055301.
[49] JCPDS database entry No. 42-1638.
[50] W. M. Prest, D. J. Luca, J. Appl. Phys., 1978, 49, 5042.
[51] R. Gregorio, M. Cestari, J. Polym. Sci., Part B: Polym. Phys., 1994, 32, 859.
[52] N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramolf, E. Sioresa, Energy Environ. Sci., 2014, 7, 1670.
[53] Y. K. Fuh, L. C. Lien, S.C. Jang, Micro Nano Lett., 2012, 7, 376.
[54] R. Yang, Y. Qin, C. Li, L. Dai, Z. L. Wang, Appl. Phys. Lett., 2009, 94, 022905.
[55] J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, D. E. Kim, T. Lee, Adv. Mater., 2015, 27, 2433.