| 研究生: |
廖佑懷 You-huai Liao |
|---|---|
| 論文名稱: |
超音波振動輔助多道次等通道彎角擠製之研究 |
| 指導教授: |
葉維磬
Wei-Ching Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 超音波 、等通彎角擠製 、路徑 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討超音波振動對於多道次等通道彎角擠製(multi-pass ECAE)之效應。藉由改變沖頭軸向超音波振幅進行三種路徑(Route A、B、C)的四道次ECAE擠製,觀察沖頭負載與擠錠機械性質之效應。並以有限元素模擬軟體Deform-3D分析多道次之成形負載驗證與超音波振動沖頭負載之變化。實驗結果顯示超音波振動對於降低ECAE成形負載有良好的效果,軸向超音波加載可使擠錠之硬度略微提升,並且可以大幅改善路徑B的硬度均勻性。有限元素模擬結果顯示,應用Deform-3D模擬分析超音波振動輔助與多道次ECAE之結果與實驗之結果具有良好的相似性。
This paper investigates the axial ultrasonic vibration assisted multi-pass equal channel angular extrusion by experiment and FEM simulation.
Experimentally change three different route (Route A, Route B and Route C) and ultrasonic applied or not to investigate the forming load, billet's hardness and surface roughness.
Experiment results show that application of ultrasonic vibration can make reduction of forming load of multi-pass ECAE processes. While in the condition of route B and route C, ultrasonic vibration make billet's hardness distribution more uniformly.
Furthermore, using FEM software Deform-3D to simulated load-stroke curve and load were also compared with the experimentally recorded load-stroke curve and load. Simulation results show that good conformity is observed between the FEM simulation and experimental results.
[1] Segal V.M. (1995), “Materials processing by simple shear”, Materials Science and Engineering: A 197, 157-164
[2] Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., & Langdon, T. G. (1998). “The shearing characteristics associated with equal-channel angular pressing.” Materials Science and Engineering: A, 257(2), 328-332.
[3] Furukawa, M., Horita, Z., & Langdon, T. G. (2002). “Factors influencing the shearing patterns in equal-channel angular pressing.” Materials Science and Engineering: A, 332(1), 97-109.
[4] Sun, P. L., Yu, C. Y., Kao, P. W., & Chang, C. P. (2002). “Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion.” Scripta materialia, 47(6), 377-381.
[5] Sun, P. L., Kao, P. W., & Chang, C. P. (2004). “Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion.” Metallurgical and Materials Transactions A, 35(4), 1359-1368.
[6] Kim, W. J., & Namkung, J. C. (2005). “Computational analysis of effect of route on strain uniformity in equal channel angular extrusion.” Materials Science and Engineering: A, 412(1), 287-297.
[7] Kim, W. J., Namgung, J. C., & Kim, J. K. (2005). “Analysis of strain uniformity during multi-pressing in equal channel angular extrusion.” Scripta materialia,53(3), 293-298.
[8] Jiang, H., Fan, Z., & Xie, C. (2008). “3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion.” Materials Science and Engineering: A, 485(1), 409-414.
[9] El-Danaf, E. A., Soliman, M. S., Almajid, A. A., & El-Rayes, M. M. (2007). “Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP.” Materials Science and Engineering: A, 458(1), 226-234.
[10] El-Danaf, E. A. (2008). “Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes.”Materials Science and Engineering: A, 487(1), 189-200.
[11] Poortmans, S., Duchêne, L., Habraken, A. M., & Verlinden, B. (2009). “Modelling compression tests on aluminium produced by equal channel angular extrusion.” Acta Materialia, 57(6), 1821-1830.
[12] Eivani, A. R., Ahmadi, S., Emadoddin, E., Valipour, S., & Karimi Taheri, A. (2009). “The effect of deformations passes on the extrusion pressure in axi-symmetric equal channel angular extrusion.” Computational Materials Science,44(4), 1116-1125.
[13] Nagasekhar, A. V., Yoon, S. C., Tick-Hon, Y., & Kim, H. S. (2009). An experimental verification of the finite element modelling of equal channel angular pressing. Computational Materials Science, 46(2), 347-351.
[14] Kim, K. J., Yang, D. Y., & Yoon, J. W. (2010). “Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (Equal Channel Angular Extrusion) via routes A and C.” Materials Science and Engineering: A, 527(29), 7927-7930.
[15] Aydın, M. (2012). “High-cycle fatigue behavior of severe plastically deformed binary Zn–60Al alloy by equal-channel angular extrusion.” Journal of Materials Processing Technology, 212(8), 1780-1789.
[16] Pasierb, A., & Wojnar, A. (1992). “An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations.” Journal of Materials Processing Technology, 34(1), 489-494.
[17] Siegert, K., & Möck, A. (1996). “Wire drawing with ultrasonically oscillating dies.” Journal of Materials Processing Technology, 60(1), 657-660.
[18] Petruzelka, J., Sarmanova, J., & Sarman, A. (1996). “The effect of ultrasound on tube drawing.” Journal of materials processing technology, 60(1), 661-668.
[19] Hung, J. C., & Hung, C. (2005). “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy.” Ultrasonics, 43(8), 692-698.
[20] Suh, C. M., Song, G. H., Suh, M. S., & Pyoun, Y. S. (2007). “Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology.” Materials Science and Engineering: A, 443(1), 101-106.
[21] Ashida, Y., & Aoyama, H. (2007). “Press forming using ultrasonic vibration.” Journal of Materials Processing Technology, 187, 118-122.
[22] Ting, W., Dongpo, W., Gang, L., Baoming, G., & Ningxia, S. (2008). “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing.” Applied Surface Science, 255(5), 1824-1829.
[23] Liu, Y., Suslov, S., Han, Q., Xu, C., & Hua, L. (2012). “Microstructure of the pure copper produced by upsetting with ultrasonic vibration.” Materials Letters, 67(1), 52-55.
[24] Djavanroodi, F., Ahmadian, H., Koohkan, K., and Naseri, R. (2013). “Ultrasonic assisted-ECAP.” Ultrasonics. Volume 53, Issue 6, August 2013, Pages 1089–1096
[25] Blaha, F., & Langenecker, B. (1955). “Elongation of zinc monocrystals under ultrasonic action.” Die Naturwissenschaften, 42(20), 556.
[26] 島川正憲(1993)。超音波工學理論實務(賴耿陽)。台南市:復漢。
[27] 陳昱樺(2013)。超音波振動輔助等通道彎角擠製之初步研究,國立中央大學,桃園縣。
[28] Patil Basavaraj, V., Chakkingal, U., & Prasanna Kumar, T. S. (2009). Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. Journal of materials processing technology, 209(1), 89-95.
[29] Balasundar, I., & Raghu, T. (2010). “Effect of friction model in numerical analysis of equal channel angular pressing process.” Materials & Design, 31(1), 449-457.
[30] Chen, C. C., & Kobayashi, S. (1978). “Rigid plastic finite element analysis of ring compression.” Applications of Numerical Methods to Forming Processes,, 163-174.