| 研究生: |
徐承芃 Cheng-Peng Hsu |
|---|---|
| 論文名稱: |
風力機塔架負載量測與疲勞壽命評估方法 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 水平軸風力機 、塔架負載量測 、疲勞壽命評估 |
| 外文關鍵詞: | Horizontal Axis Wind Turbine, load measurements of tower, fatigue life |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風力機塔架的設計壽命通常為二十年,台灣地區第一期風力機即將在2020屆滿使用期限。由於過去風力機的設計採用較高的安全係數以及歷年來的平均風速逐漸降低,以至於風力機可能會超過原先的設計壽命。本研究建立了風力機塔架負載量測方法與疲勞壽命分析方法,可做為後續進行塔架延壽評估之基礎。研究對象為台中港區2 MW水平軸風力機(9號機)。在塔架底部黏貼應變規,依據IEC 61400-13規範進行風速及負載量測,並以FAMOS軟體撰寫數據處理程式,求得風速分布及等效負載。在疲勞壽命評估方面,藉由短時間應變量測的馬可夫矩陣及配合風速分布,外推風力機在正常發電狀況下的20年負載歷程及計算疲勞損傷。研究結果顯示,風力機在20年的正常發電狀況下,塔架底部(不考慮螺栓)不會產生疲勞失效。
The tower of wind turbines is commonly designed for 20-year service life. The first phase of wind turbines in Taiwan will be expired in 2020. Due to reserves resulting from design safety factors and lower average wind speeds than expected, wind turbines are likely to operate beyond their designed life. This study established load measurement method and fatigue life prediction of a 2 MW wind turbine located in Taichung port. The load measurement was done according to the IEC 61400-13 standard, and several strain gages were mounted in the bottom of the wind turbine tower. Wind speed and load data were processed with FAMOS software to obtain wind speed distribution and equivalent load. In respect to fatigue analysis, based on the wind speed distribution, the stress data was extrapolated to gain the endured load spectrum in 20 years. Finally, fatigue damage of the tower was evaluated. From the results, fatigue life of the wind turbine tower under normal operation is far beyond 20 years.
[1] British Petroleum, “BP Statistical Review of World Energy June 2015,” 64th edition, 2015.
[2] IEC 61400-1 Wind turbines-Part1: Design Requirements, International Standard, third edition, 2005.
[3] GL, “Wind Energy-Guideline for the Continued Operation of Wind Turbines,” Rules and Guidelines Industrial Services, 2009.
[4] Deutsches Institut für Bautechnik: Richtlinie für Windenergieanlagen, draft January 2012.
[5] Energy Information Administration, “Annual energy outlook 2015 with projections to 2040,” DOE/EIA-0383, 2015.
[6] International Energy Agency, “World energy outlook 2015,” 2015.
[7] Global Wind Energy Council, “Global wind report-annual market update,” 2015.
[8] Data Bank for Atmospheric & Hydrologic Research, 大氣水文研究資料庫,https://dbahr.narlabs.org.tw.
[9] 周瑞生、涂菀庭、陳正誠、陳瑞華、楊維和,「風力發電機塔架受颱風侵襲倒塌致災原因之探討」,營建管理季刊,研究論文,民國99年。
[10] 陳一成,「台灣風場評估及風力機可用性分析-以台中風力發電廠為例」,國立中興大學,碩士論文,民國96年。
[11] 鄭榮和、沈丞佑、林家緯、李盈宏、鍾秋峰、陳瑞麒、唐文元,「ABAQUS 於風力機結構安全評估之應用」,國立臺灣大學機械工程學系,民國97年。
[12] 張詠君,「風力發電機塔架可靠度分析」,國立台灣大學,碩士論文,民國100年。
[13] IEC 61400-13 Wind turbines-Part13: Measurement of mechanical loads, International Standard, edition 1, 2015.
[14] P. S. Veers, S. R. Winterstein, “Application of measurement loads to wind turbine fatigue and reliability analysis,” ASME Wind Energy Symposium, AIAA Aerospace Sciences Meeting, Reno Nevada, January 6-9 1997.
[15] P.J Moriarty, W.E Holley, S.P Butterfield, “Extrapolationod extreme and fatigue loads using probabilistic methods,” Technical Report, NREL/TP-500-34421, 2004.
[16] R. Kamieth, R. Liebich, “Backward Extrapolation of Short-Time Measurement Data for a Remaining Service Life Estimation of Wind Turbines,” DEWEK Wind Energy Conference, 2012.
[17] NREL, R. Santos, J. van Dam, “Mechanical loads test report for the U.S. department of energy 1.5-megawatt wind turbine,” Technical Report NREL/TP-5000-63679, July 2015.
[18] J. Wang, Y. Ye, H. Lu, R. Li, “IEC standard based virtual wind turbine mechanical load test system,” Renewable Energy 66 (2014) 634-640, 2014.
[19] K. Gil, C. Chung , J.S Bang, “Mechanical calibration for the load measurement of a 750 kW directdrive wind turbine generator system (KBP-750D),” Renewable Energy 79 (2015) 177-186, 2014.
[20] A. Grunwald, R. Kamieth, R. Liebich, M. Melsheimer, C. Heilmann, “Reconstruction of a wind turbine's endured operational load spectrum using a short-time load measurement and operational data,” PO-261 EWEA presentation, 2014.
[21] X. f. Liu, L. Bo, H. l. Luo, “Dynamical measurement system for wind turbine fatigue load,” Renewable Energy 86 (2016) 909-921, 2015.
[22] International Energy Agency, “Recommended practices for wind turbine testing and evaluation. 3. Fatigue loads,” IEA, 2 edition, 1990.
[23] American Society for Testing and Materials, “Standard practices for cycle-counting in fatigue analysis,” Designation: E 1049-85, 2005.
[24] International Institute of Welding. Fatigue design of welded joints and components. Abington, Cambridge: Abington Publishing, 1996.
[25] J. A Bannaantine, J. J. Comer and J. L. Hardrock, “Fundamentals of Metal Fatigue Analysis,” Prentice Hall, New Jersey, 1990.
[26] 黃嘉彥,「工程結構之疲勞與破壞」,徐氏基金會,民國87。
[27] M. Matsuishi, T. Endo, “Fatigue of Metals Subjected to Varying Stress,” paper presented to Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968.
[28] American Society for Testing and Materials, Annual Book of ASTM Standards, Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01 - Metals-Mechanical Testing; Elevated and Low- Temperature Tests, ASTM, pp. 836-848, Philadelphia, 1986.
[29] H. E. Boyer, “Atlas of Fatigue Curves,” Senior Technical Editor American Society for Metals, PA, 54, 1985.
[30] 港灣環境資訊網,http://isohe.ihmt.gov.tw/welcome.aspx