跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘幸璟
Hsing-Ching Pan
論文名稱: 以氫氧化鉀蝕刻製程製作掘入式增強型氮化鋁銦/氮化鎵異質結構場效電晶體
Fabrication of Enhancement-Mode AlInN/GaN Heterostructure Field-Effect Transistors Using KOH Gate Recess Technique
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 氮化鋁銦氮化鎵增強型氫氧化鉀
外文關鍵詞: AlInN, GaN, Enhancement-mode, KOH
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 閘極掘入式製程是製作增強型氮化鎵異質結構場效電晶體常用的一種方法,目前主要是以電漿乾蝕刻方式為之。為避免蝕刻深度不穩定之問題及減少電漿蝕刻傷害,本論文研究提出以氫氧化鉀濕蝕刻方式製作增強型氮化鋁銦/氮化鎵異質結構金氧半場效電晶體。此研究所使用的磊晶結構具有氮化鎵披覆層,利用氫氧化鉀對氮化鋁銦與氮化鎵的高選擇性蝕刻比,此氮化鎵披覆層能作為濕蝕刻保護層,而氮化鎵通道層也能扮演蝕刻停止層的角色,以期獲得晶圓均勻的臨界電壓。AFM結果顯示,利用氫氧化鉀濕蝕刻方式能有效控制蝕刻深度且蝕刻線寬無明顯橫向擴張。若定義導通電流達到1 mA/mm時之電壓值為臨界電壓,所製作之增強型Ni/SiO2/GaN MIS電晶體在濕蝕刻10分鐘與15分鐘後的臨界電壓分別為1.4 V與1.1 V;閘極漏電流可低至10-7 mA/mm;在Vg= 15 V下,最大導通電流為441 mA/mm;Ion/Ioff ratio為 107;崩潰電壓可達287 V;經過10 msec Vd= 200 V 截止偏壓,在開啟後2 msec所得之動態電阻比值為1.4。此外,閘極C-V遲滯量測結果顯示,濕蝕刻增強型元件遲滯量為1.06 V,相較於乾式蝕刻增強型元件之遲滯量1.66 V為低,表示此論文所提出之KOH濕蝕刻確實引發較少的界面補陷(trap),惟後續仍須使用如原子層沉積法之製程製作MIS元件,以釐清閘極掘入製程與閘極介電層製程各自引發之界面補陷有多寡。


    Gate-recess is a typical process to fabricate enhancement-mode GaN-based heterostructure field-effect transistors (HFETs). Due to the inertness of GaN-based materials, the gate-recess process is often carried out by plasma etching. To avoid the issues associated with etching depth control and plsma damage, a KOH wet-etching method is proposed and developed for the fabrication of AlInN/GaN metal-insulator-semiconductor (MIS) FETs in this study. Owing to the high etching rate selectivity of AlInN over GaN, the GaN channel layer itself can serve as an etch-stop layer, resulting in a uniform recess depth and Vth across the wafer. Atomic force microscopy images show that the use of the KOH wet-etching method can effectively control the etching depth and linewidth without significant lateral etch. Enhancement-mode devices are successfully fabricated with Vth values of 1.4 V and 1.1 V (Id = 1 mA/mm) for the KOH wet-etching time of 10 min and 15 min, respectively. The devices exhibit a maximum current density of 441 mA/mm at Vg= 15 V, an Ion/Ioff ratio of 107 with a gate leakage current as low as 10-7 mA/mm and an off-state breakage voltage of 287 V. Dynamic Ron ratio of 1.4 is also obtained after Vd off-state stress of 200 V for 10 ms. In addition, the hysteresis of gate C-V curves of the KOH etched device is 1.06 V, while that of the plasma-etched device is 1.66 V. This suggests that the KOH wet etching process leads to fewer interface traps. However, further study on the MIS interface is needed in order to clarify the effects of gate recess process and gate dielectric deposition process on the density of interfacial traps, respectively.

    論文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2氮化鎵材料特性 3 1.2.1 自發性極化效應 4 1.2.2 壓電極化效應 6 1.3 氮化鎵高功率元件發展現況 8 1.4論文架構 12 第二章 增強型MIS-FETs 元件製作 13 2.1實驗設計 13 2.2增強型MIS-FETs元件製作流程 15 2.3增強型MIS-FETs 製程檢視 21 2.4本章總結……………………………………………………………....27 第三章 增強型MIS-FETs元件特性 28 3.1增強型MIS-FETs 電壓電流特性 28 3.2增強型MIS-FETs 動態電阻量測 34 3.3 本章總結 39 第四章 結論與未來展望 40 參考文獻 42 附錄A 不同溫度成長氮化鎵披覆層對Schottky HEMTs特性之影響 44 1.1磊晶結構設計 44 1.2霍爾量測與表面分析 48 1.3元件製作與電性分析 50 1.3.1元件製作製作流程 50 1.3.2元件電壓-電流特性 53 1.3.3 閘極I-V與C-V特性分析......……………………..…………..59 1.4總結 63 參考文獻 64

    [1] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, Nov-Dec 2006.
    [2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, Jan 1 2000.
    [3] J. Kuzmik, "Power electronics on InAlN/(In)GaN: Prospect for a record performance," Ieee Electron Device Letters, vol. 22, pp. 510-512, Nov 2001.
    [4] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, et al., "Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors," Journal of Applied Physics, vol. 106, p. 124503, 2009.
    [5] D. S. Lee, X. Gao, S. P. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs With InGaN Back Barrier," Ieee Electron Device Letters, vol. 32, pp. 1525-1527, Nov 2011.
    [6] F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, D. Ducatteau, C. Gaquière, N. Grandjean, and E. Kohn, "Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices?" International Electron Devices Meeting(IEDM), pp. 1–4, 2006.
    [7] H. Saito, Y. Takada, M. Kuraguchi, M. Yumoto, and K. Tsuda, "Over 550 V breakdown voltage of InAlN/GaN HEMT on Si," physica status solidi (c), vol. 10, pp. 824-826, 2013.
    [8] J. Kuzmik, G. Pozzovivo, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, et al., "Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors," physica status solidi (c), vol. 6, pp. S925-S928, 2009.
    [9] Q. Zhou, H. W. Chen, C. H. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, "Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage," Ieee Electron Device Letters, vol. 33, pp. 38-40, Jan 2012.
    [10] Q. Zhou, W. J. Chen, S. H. Liu, B. Zhang, Z. H. Feng, S. J. Cai, et al., "Schottky-Contact Technology in InAlN/GaN HEMTs for Breakdown Voltage Improvement," Ieee Transactions on Electron Devices, vol. 60, pp. 1075-1081, Mar 2013.
    [11] K. Jena, R. Swain, and T. R. Lenka, "Impact of a drain field plate on the breakdown characteristics of AlInN/GaN MOSHEMT," Journal of the Korean Physical Society, vol. 67, pp. 1592-1596, 2015.
    [12] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, and M. Blasingame, "Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors," Applied Physics Letters, vol. 68, pp. 514-516, Jan 22 1996.
    [13] A. M. H. Kwan and K. J. Chen, "A Gate Overdrive Protection Technique for Improved Reliability in AlGaN/GaN Enhancement-Mode HEMTs," Ieee Electron Device Letters, vol. 34, pp. 30-32, Jan 2013.
    [14] Z. K. Tang, Q. M. Jiang, Y. Y. Lu, S. Huang, S. Yang, X. Tang, et al., "600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse," Ieee Electron Device Letters, vol. 34, pp. 1373-1375, Nov 2013.
    [15] Y. Wang, M. J. Wang, B. Xie, C. P. Wen, J. Y. Wang, Y. L. Hao, et al., "High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique," Ieee Electron Device Letters, vol. 34, pp. 1370-1372, Nov 2013.
    [16] S. L. Zhao, J. S. Xue, P. Zhang, B. Hou, J. Luo, X. J. Fan, et al., "Enhancement-mode Al2O3/InAlN/AlN/GaN metal-insulator-semiconductor high-electron-mobility transistor with enhanced breakdown voltage using fluoride-based plasma treatment," Applied Physics Express, vol. 7, Jul 2014.
    [17] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, et al., "Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V," Applied Physics Express, vol. 8, p. 036502, 2015.
    [18] E. Sillero, D. Lopez-Romero, F. Calle, M. Eickhoff, J. F. Carlin, N. Grandjean, et al., "Selective etching of AlInN/GaN heterostructures for MEMS technology," Microelectronic Engineering, vol. 84, pp. 1152-1156, May-Aug 2007.
    [19] H.C.Chiu, C.H.Wu, J.F.Chi, J.I.Chyi ,G.Y.Lee, et al. "N2O treatment enhancement-mode InAlN/GaN HEMTs with HfZrO2 High-k insulator," Microelectronics Reliability, vol. 55, pp. 48-51, 2015.

    QR CODE
    :::