跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏聰文
Tsung-Wen Yen
論文名稱: 金屬和半導體奈米粒子的最佳化構形和磁性性質
The lowest energy structure and magnetic properties of metallic and covalent clusters
指導教授: 賴山強
San-Kiong Lai
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 131
中文關鍵詞: 奈米粒子磁性性質構形最佳化
外文關鍵詞: nanoparticle, magnetic property, geometry optimization
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文的第一部分我們提出了能夠非常有效率搜尋奈米粒子的最佳化構形的演算法。肇因於離子和價電子在半導體中的複雜偶合作用,我們必須提出一個能夠不預設前提下卻能夠有效搜尋系統的最優化構形的演算法。我們研究的系統為碳奈米粒子在顆數3~24這個範圍的構形變化。此外,我們和文獻上其他相關的理論工作結果做了比較和評論。論文的第二個部分首先我們使用了一個被公認為最好的構形演算法 (P. J. Hsu, S. K. Lai, J. Chem. Phys. 124 (2006) 0447110) 來得到銀銅合金奈米粒子 (粒子數為38) 的最穩定構形。緊接著我們在這個最佳化構形的基礎上,把電子間的交互作用透過一個更嚴謹的密度泛函理論來進一步分析。我們特別關注於系統的電性和磁性性質。數據結果顯示對於某些高度對稱的奈米粒子會意外地帶有靜磁矩。我們提出使用分子點群理論以及克萊門-尼爾森的模型來解釋靜磁矩之所以會出現其背後的物理機制為何。


    In the first part, we proposed a modified basin hopping method which is very robust in searching the lowest energy structure of carbon clusters CN ( N=3-24). Due to the intricate coupling among ions and valence electrons in covalent systems, an unbiased optimization is necessary to locate the lowest energy structures. We have obtained the topological transition from a linear chain, a monocyclic ring to a polycyclic ring, and a fullerene/cage-like geometry and we also compared our structural findings with theoretical works in this field. In the second part of the thesis we first utilized a state-of-the-art algorithm that applies the empirical Gupta potential to search for the lowest energy structures of AgnCu38-n bimetallic clusters. We investigated from the results of DFT the charge density and spin charge density dispersions as well as magnetic properties of this system. It was found that the clusters at n=1-4, 24 as well as the two pure clusters Ag and Cu uncommonly carry net magnetic moments. We invoked the point group theory to explain these unexpected magnetism by analyzing the molecular orbital energy levels (MOELs) of these clusters. The MOELs were, however calculated by symmetry restricted DFT. and proposed to use point group theory for further explanation of these unexpected net magnetism.

    誌謝 i PREFACE ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix PART I 1 Chapter 1 INTRODUCTION 2 Chapter 2 COMPUTATIONAL METHODS 9 2.1 DFTB2 METHOD 9 2.1.1 Theory 9 2.1.2 Parameter set for DFTB2 10 2.2 Modified BH technique 11 2.3 DFT optimization 12 Chapter 3 RESULTS AND DISCUSSION 14 3.1 Topological transitions of Cn (3≤ n ≤24) 14 3.2 Different size ranges and comparison with early studies 19 3.3 Concluding remarks and perspectives 26 3.4 Appendix A: Modified Basin Hopping Technique 28 REFERENCES 32 PART II 36 Chapter 5 Introduction 37 Chapter 6 Theoretical methods 42 6.1 Atomic structures: PTMBHPGA 42 6.2 Atomic structures: point group symmetry 43 6.3 Atomic structures: DFTM 46 Chapter 7 Results and discussion 48 7.1 Atomic Structures and cluster stability 48 7.2 Charge density and Spin charge density distributions 55 7.3 Interpretation of the Magnetic Moments 64 7.4 Conclusion 77 7.5 Appendix A: The SALC method 79 References 82 PART III 86 Chapter 9 Background introduction 87 9.1 What are nanoclusters? 87 9.2 Pedagogical perspectives 87 9.2.1 Thermodynamics properties 87 9.2.2 Electronic and magnetic properties 89 9.3 Industrial perspective 90 9.4 Theoretical works which are related to nanoclusters. 90 9.5 Summary 91 References 92 Chapter 10 Global optimization 94 10.1 Introduction 94 10.2 Genetic algorithm 97 10.3 Basin Hopping 100 References 102 Chapter 11 DFT methodology 104 11.1 Hartree-Fock methods and density functional theory 104 References 109 Chapter 12 Jellium model and Clemenger-Nilsson model 110 References 114

    [1] P. Freivogel, J. Fulara, and J. Maier, Astrophys. J. 431, L151 (1994).
    [2] J. Fulara, D. Lessen, P. Freivogel and J. P. Maier, Nature 366, 439 (1993).
    [3] H. Kroto, and K. McKay, Nature 331, 328 (1988).
    [4] P. Gerhardt, S. Löffler, and K.H. Homann, Chem. Phys. Lett. 137, 306 (1987).
    [5] Q. L. Zhang, S. C. O'Brien, J. R. Heath, Y. Liu, R. F. Curl, H. W. Kroto, R. E.
    Smalley, J. Phys. Chem. 90, 525 (1986).
    [6] H. Koinuma, T. Horiuchi, K. Inomata, H. K. Ha, K. Nakajima and K. A.
    Chaudhary, Pure and Appl. Chem. 68, 1151 (1996).
    [7] M. D. Allendorf, J. Electrochem. Soc. 140, 747 (1993).
    [8] M. F. Jarrold, Nature 407, 26 (2000).
    [9] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
    [10] D.W. Brenner, Phys. Rev. B 46, 1948 (1992).
    [11] J. Hur and S. J. Stuart, J. Chem. Phys. 137, 054102 (2012).
    [12] Y. Zeiri, Phys. Rev. E 51, R2769 (1995).
    [13] J. A. Niesse and H. R. Mayne, J. Chem. Phys. 105, 4700 (1996).
    [14] D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997).
    [15] Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987).
    [16] B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009).
    [17] B. Kiran, S. Balusu, H. J. Zhai, S. Yoo, X. C. Zeng and L. S. Wang, Proc. Natl.Acad. Sci. 102, 961 (2005).
    [18] E. Aprà, R. Ferrando and A. Fortunelli, Phys. Rev. B 73, 205414 (2006).
    [19] D. Jiang and M. Walter, Phys. Rev. B 84, 193402 (2011).
    [20] G. Seifert and J. O. Joswig, WIREs Comput. Mat. Sci. 2, 456 (2012).
    [21] M. Elsner and G. Seifert, Philos. Trans. R. Soc. A 372, 20120483 (2014).
    [22] Q. Cui and M. Elstner, Phys. Chem. Chem. Phys. 16, 14368 (2014).
    [23] S. K. Lai, P. J. Hsu, K. L. Wu, W. K. Liu and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
    [24] P. J. Hsu and S. K. Lai, J. Chem. Phys. J. Chem. Phys. 124, 044711 (2006).
    [25] L. Montagnon and F. Spiegelman, J. Chem. Phys. 127, 084111 (2007).
    [26] K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem.
    Phys. Lett. 157, 479 (1989).
    [27] S. Yoo and X. C. Zeng, Angew. Chem. Int. Ed. 44, 1491 (2005).
    [28] J. Bai, Li. F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T.
    Frauenheim, L. S. Wang, and X. C. Zeng, J. Phys. Chem. A 110, 908 (2006).
    [29] S. Heiles and R. L. Johnston, Int. J. Quantum Chem. 113, 2091 (2013).
    [30] H. ur Rehman, M. Springborg, and Y. Dong, J. Phys. Chem. A 115, 2005
    (2011).
    [31] I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu, and K. A.
    Jackson, Phys. Rev. Lett. 85, 546 (2000).
    [32] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995).
    [33] Z. Chen, X. Jiang, J. Li, and S. Li, J. Chem. Phys. 138, 214303 (2013).
    [34] S. Hobday and R. Smith, Mol. Simul. 25, 93 (2000); J. Chem. Soc. Faraday
    Trans. 93, 3919 (1997). The lowest energy values in this second reference
    have been improved by the first one.
    [35] J. P. K. Doye, Phys. Rev. E 62, 8753 (2000).
    [36] K. A. Jackson, M. Horoi, I. Chaudhuri and T. Frauenheim, Phys. Rev. Lett. 93, 013401 (2004).
    [37] D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
    [38] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Phys. Rev.
    B 51, 12947 (1995).
    [39] G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quant. Chem. 58, 185 (1996).
    [40] M. Elstner, D. Porezag, G. Jungnickel, M. Haugk, T. Frauenheim, S. Suhai,
    and G. Seifert, Phys. Rev. B 58, 7260 (1998).
    [41] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    [42] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    [43] W. Matthew and C. Foulkes, Phys. Rev. B 39, 12520 (1989).
    [44] B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678
    (2007); http://www.dftb.org.
    [45] T. Krüger, M. Elstner, P. Schiffels and T. Frauenheim, J. Chem. Phys. 122,
    114110 (2005).
    [46] A.M. Koster, G. Geudtner, P. Calaminici, M. E. Casida, V.D. Dominguez, R.
    Flores-Moreno, G.U. Gamboa, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J.
    M. del Campo, J. U. Reveles, A. Vela, B. Zuniga-Gutierrez and D. R.
    Salahub, deMon2k, Version 3, The deMon developers, Cinvestav, Mexico City
    (2011); http://www.demon-software.com.
    [47] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [48] W. E. Barth and R. G. Lawton, J. Am. Chem. Soc. 93, 1730 (1971).
    [49] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou,
    and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
    [50] W. Qin, W. C. Lu, L.Z. Zhao, Q. J. Zang, C. Z. Wang and K. M. Ho, J. Phys.:
    Condens. Matter 21, 455501 (2009).
    [51] J. Hutter, H. P. Lüthi and F. Diederich, J. Am. Chem. Soc. 116, 750 (1994).
    [52] R. O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).
    [53] R. O. Jones, J. Chem. Phys. 110, 5189 (1999).
    [54] M. Afshar, M. Babaei and A. H. Kordbacheh, J. Theor. Appl. Phys. 7, 59
    (2013).
    [55] H. J. Hwang, A. van Orden, K. Tanaka, E. W. Kuo, J. R. Heath and R. J.
    Saykally, Mol. Phys. 79, 769 (1993).
    [56] Z. Slanina, J. Kurtz and L. Adamowicz, Mol. Phys. 76, 387 (1992).
    [57] V. I. Baranovski, Chem. Phys. Lett. 408, 429 (2005).
    [58] J. M. L. Martin and P. R. Taylor, J. Phys. Chem. 100, 6047 (1996).
    [59] J. M. L. Martin, J. El-Yazal, J. P. Francois, Chem. Phys. Lett. 242, 570 (1995).
    [60] K. Raghavachari and J. S. Binkley, J. Chem. Phys. 87, 2191 (1987).
    [61] V. Parasuk and J. Almlof, Theor. Chim. Acta 83, 227 (1992).
    [62] M. Gaus, A. Goez and M. Elstner, J. Chem. Theor. Comput. 9, 338 (2013).
    [63] S. K. Lai, S. Icuk, T. W. Yen and Y. H. Tang, to be published.
    [64] Y. Z. Tan, S. Y. Xie, R. B. Huang amd L. S. Zheng, Nature Chem. 1, 450
    (2009).
    [65] A. Rodriguez-Fortea, S. Irle and J. M. Poblet, WIREs Comput. Mol. Sci. 1,
    350 (2011).
    [66] Z. Slanina, K. Ishimura, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 384,
    114 (2004).
    [67] H. W. Kroto, Nature 329, 529 (1987).
    [68] D. M. Cox, D. J. Trevor, K. C. Reichmann and A. Kaldor, J. Am. Chem. Soc.
    108, 2457 (1986).
    [69] H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M.
    Gelmont, D. Olevano and B. Issendorff, Nature 407, 60 (2000).
    [70] S. Sokolova, A. Lüchow, J. B. Anderson, Chem. Phys. Lett. 323, 229 (2000).
    [71] W. An, Y. Gao, S. Bulusu, and X. C. Zeng, J. Chem. Phys. 122, 204109
    (2005).
    [72] C. Allison and K. A. Beran, J. Mol. Struct. (Theochem) 680, 59 (2004).

    QR CODE
    :::