| 研究生: |
蔡錦福 Chin-fu Tsai |
|---|---|
| 論文名稱: |
強健控制系統之寬鬆穩定條件 Relaxation Study Assuring Non-quadratic Robust Stability |
| 指導教授: |
羅吉昌
Ji-chang Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 線性矩陣不等式 、非二次穩定 、寬鬆矩陣變數 、波雅定理 、模糊控制系統 、強健控制系統 |
| 外文關鍵詞: | Slack matrices, Linear matrix inequality, Takagi-Sugeno fuzzy control systems, Robust control systems, P´olya Theorem, Parameter-dependent LMIs, Non-quadratic relaxations |
| 相關次數: | 點閱:30 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究連續時間強健(Robust)控制系統及離散時間Takagi-Sugeno(T-S)模糊控制系統的非二次(non-quadratic)穩定寬鬆條件;我們利用波雅定理(P´olya Theorem)的代數性質加上寬鬆矩陣變數(slack matrix variables)來建立一組寬鬆的線性矩陣不等式(LMI),因為非二次(non-quadratic)穩定的分析加上寬鬆矩陣變數(slack matrix variables)的使用,使得此組線性矩陣不等式(LMI) 的求解保守性更進一步的降低,亦即當使用波雅定理
(P´olya Theorem)時,齊次多項式的階數不用太高,就可以找到解,這是本論文最大的優點;最後會提出幾個例子來證明我們理論的優越性。
In this thesis,we investigate non-quadratic ralaxation for continuous time robust control systems and discreate time fuzzy control systems,which are characterized by parameter-dependent LMIs (PD-LMIs),exploiting the algebraic property of P´olya Theorem to construct a family of finite dimensional LMI relaxations with righ-hand-side slack matrices that release conservatism.Certificates of convergence is proved.Lastly,numerical experiments to illustrate the advantage of relaxations,being less conservative and effective, are provided.
[1] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang“Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
[2] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule consequence and PDC controller: a universal framework for nonlinear control systems,” in Proc. of 18th Int’l Conf. of the North American Fuzzy Information Processing Society, 2000.
[3] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy systems:rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy Systems, 2000.
[4] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
pp. 14–23, Feb. 1996.
[5] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[6] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
no. 2, pp. 250–265, May 1998.
[7] J. Lo and M. Lin, “Observer-based robust H1 control for fuzzy systems using two-step procedure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359,
June 2004.
[8] ——, “Robust H1 nonlinear control via fuzzy static output feedback,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Applications, vol. 50, no. 11,
pp. 1494–1502, Nov. 2003.
[9] M. de Oliveira, J. Bernussou, and J. Geromel, “A new discrete-time robust stability condition,” Syst. & Contr. Lett., vol. 37, pp. 261–265, 1999.
[10] D. Peaucelle, D. Arzelier, O.Bachelier, and J.Bernussou, “A new robust Dstability condition for real convex polytopic uncertainty,” Syst. & Contr. Lett.,
vol. 40, pp. 21–23, 2000.
[11] J. Geromel and M. de Oliveira, “H2 and H1 robust filtering for convex bounded uncertain system,” IEEE Trans. Automatic Control, vol. 46, no. 1, pp. 100–107,
Jan. 2001.
[12] M. de Oliveira, J. Geromel, and J. Bernussou, “Extended H2 and H1 norm characterizations and controller parameterizations for discrete-time systems,” Int. J.
Contr., vol. 75, no. 9, pp. 666–679, 2002.
[13] R. Oliveira and P. Peres, “LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions,” Syst. & Contr. Lett.,
vol. 55, pp. 52–61, 2006.
[14] ——, “Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxatiions,” IEEE Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, July 2007.
[15] ——, “LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability,” in Proc. of 44th IEEE Conf. on Deci and Contr, Seville, Spain, Dec. 2005, pp. 1660–1665.
[16] V. Montagner, R. Oliveira, P. Peres, and P.-A. Bliman, “Linear matrix inequality characterisation for H1 and H2 guaranteed cost gain-scheduling quadratic stabiilisation of linear time-varying polytopic systems,” IET Control Theory Appl., vol. 1, no. 6, pp. 1726–1735, 2007.
[17] V. Montagner, R. Oliveira, and P. Peres, “Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi-sugeno
systems,” in Proc. of the 2007 American Control Conference, July 2007, pp. 4059–4064.
[18] ——, “Convergent LMI relazations for quadratic stabilization and H1 controll of Takagi-sugeno fuzzy systems,” IEEE Trans. Fuzzy Systems, pp. 863–873, Aug.
2009.
[19] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
Oct. 2000.
[20] C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-S. Lee, “A new LMI-based approach to relaxed quadratic stabilzation of T-s fuzzy control systems,” IEEE
Trans. Fuzzy Systems, vol. 14, no. 3, pp. 386–397, 2006.
[21] X. Liu and Q. Zhang, “New approaches to H1 controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582,
2003.
[22] B. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-sugeno’s form,” Automatica, vol. 43, pp.503–508, 2006.
[23] B. Ding and B. Huang, “Reformulation of LMI-based stabilisation conditions for non-linear systems in Takagi-Sugeno’s form,” Int’l J. of Systems Science, vol. 39,
no. 5, pp. 487–496, 2008.
[24] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete fuzzy models,” in 2001 IFAC Conference, 2001.
[25] ——, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, pp. 823–829, 2004.
[26] J. Wan and J. Lo, “LMI relaxations for nonlinear fuzzy control systems via homogeneous polynomials,” in The 2008 IEEE World Congress on Computational
Intelligence, FUZZ2008, Hong Kong, CN, June 2008, pp. 134–140.
[27] A. Sala and C. Ari˜no, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,”
Fuzzy Set and Systems, vol. 158, pp. 2671–2686, 2007.
[28] J. Lo and J. Wan, “Studies on LMI relaxations for fuzzy control systems via homogeneous polynomials,” IET Control Theory Appl., 2010, in press.
[29] V.Montagner, R. Oliveira, T. Calliero, R. Borges, P. Peres, and C. Prieur, “Robust absolute stability and nonlinear state feedback stabilization based on polynomial
Lur’e functions,” Nonlinear Analysis, vol. 70, pp. 1803–1812, 2009.
[30] H. Gao, Z. Wang, and C. Wang, “Improved H1 control of discrete-time fuzzy systems: a cone complementarity linearization approach,” Information Science,
vol. 175, pp. 57–77, 2005.