| 研究生: |
戴宏穎 Hong-Ying Dai |
|---|---|
| 論文名稱: |
使用離子束濺鍍系統降低EUV反射鏡鉬矽介面擴散層厚度之研究 Reducing the thickness of Molybdenum-Silicon Interdiffusion Layer of EUV Reflector by Ion Beam Sputtering System |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | Mo/Si多層膜反射鏡 、介面擴散層 、離子束濺鍍 、EUV |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EUV微影蝕刻技術正朝著高產能、高良率的方向發展,然而EUV曝光機內Mo/Si反射鏡的介面擴散層厚度嚴重影響反射鏡光學品質,是產業朝向高產能的一個阻礙。然而離子束濺鍍法所鍍製的多層膜,能有效的減少介面擴散及降低各介面的粗糙度,加上此沉積技術能在多層膜生長中產生最少數量的缺陷,故這項技術開始受到大家的重視。
因此本論文使用離子束濺鍍系統,在60 ℃下調整離子束電壓及電流,首先鍍製Mo單層膜以及在Al2O3或SiO2上鍍製Si薄膜,並以橢偏儀進行量測,界定單層膜厚度。接著鍍製二週期Mo/Si多層膜,先使用XRR量測,IMD軟體擬合得出多層結構資訊,初步判斷調整各參數下多層膜的介面厚度變化趨勢,最後再透過TEM橫截面量測,探討離子束電壓及電流對微觀結構的影響,發現降低離子束電壓能夠減少介面擴散層厚度,離子束電流必須選擇折衷的數值,以獲得最佳介面表現。然而在TEM中Si材料的低電子吸收率,及Mo材料的高電子吸收率,造成TEM膜厚量測結果與XRR擬合數值有出入。AFM表面粗糙度結果顯示,離子束電壓的增強並未對多層膜的表面粗糙度有明顯變化,離子束電流的增強能夠平滑多層膜的表面,顯示吸附原子(ad atom)的通量多寡影響了多層膜的表面粗糙度趨勢。
UV lithography and etching technology is developing in the direction of high productivity and high yield. However, the thickness of the interface diffusion layer of the Mo/Si mirror in the EUV lithography system seriously affects the optical quality of the mirror, which is an obstacle for the industry to move towards high productivity. However, the Mo/Si multilayers deposited by ion beam sputtering can effectively reduce the interface diffusion and reduce the roughness of each interface. In addition, this deposition technology can produce a minimum number of defects in the growth of the multilayers, so this technology has begun to attract attention.
Therefore, in this paper, the ion beam sputtering system was used to adjust the ion beam voltage and current at 60 ℃℃. First, Mo monolayer was deposited and Si thin film was deposited on Al2O3 or SiO2,and measured with ellipsometer to define the thickness of the monolayer. Next, two pairs of Mo/Si multilayers was deposited, firstly measured by XRR, and fitted with IMD software to obtain the multilayers structure information, and preliminarily judged the change trend of the interface thickness of the multilayers under the adjustment of various parameters, Finally, the effects of ion beam voltage and current on the microstructure were investigated through TEM cross-sectional measurement. It was found that decreasing the ion beam voltage can reduce the thickness of the interface diffusion layer, and the ion beam current must be selected to compromise the value to obtain the best interface performance. However, in TEM, the low electron absorptivity of Si material and the high electron absorptivity of Mo material lead to the discrepancy between the measured results of TEM film thickness and the fitting values of XRR. The AFM surface roughness results showed
iii
that the enhancement of ion beam voltage did not significantly change the surface roughness of the multilayers, and the enhancement of ion beam current could smooth the surface of the multilayers, indicating that the flux of ad atoms affected the surface roughness trend.
參考文獻
[1] Craig De Young. (2019). EUV: Enabling cost efficiency, tech innovation and future industry growth. ASML open slide.
[2] 經濟部技術處 . (2020). 2020/2021年產業技術白皮書 , 產業篇 .
[3] 施錫龍 , 丁永強 , 戴寶通 . (2010). 極紫外光微技術簡介 , 第十六卷第三期 , p.114.
[4] 李正中 . (2020). 薄膜光學與鍍膜技術 , 第九版藝軒圖書 .
[5] Wagner, C., Harned, N. (2010). EUV lithography: Lithography gets extreme. Nature Photonics, Volume 4, Issue 1, 24-26.
[6] EUV曝光機的實際內部影像圖 , Available:
https://www.youtube.com/watch?v=skUCP2f4HIM&feature=emb_logo.
[7] Louis, E., Yakshin, A. E., Tsarfati, T., & Bijkerk, F. (2011). Nanometer interface and materials control for multilayer EUV-optical applications. Progress in Surface Science, 86(11-12), 255–294.
[8] Louis, E., Yakshin, A. E., Goerts, P. C., Oestreich, S., Stuik, R., Maas, E. L. G. (2000). Progress in Mo/Si multilayer coating technology for EUV optics. Emerging Lithographic Technologies IV, 3997, 406-411.
[9] Chkhalo, N. I., Gusev, S. A., Nechay, A. N., Pariev, D. E., Polkovnikov, V. N., Salashchenko, N. N., … Tatarsky, D. A. (2017). High-reflection Mo/Be/Si multilayers for EUV lithography. Optics Letters, 42(24), 5070.
[10] Kearney, P. A. (1997). Mask blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer
106
Structures, 15(6), 2452.
[11] 伍秀菁伍秀菁, 汪若文汪若文, 林美吟林美吟. (2001). 真空技術與應用真空技術與應用, 第一版第一版, 國科國科會精儀中心會精儀中心.
[12] 李正中李正中. (2020). 薄膜光學與鍍膜技術薄膜光學與鍍膜技術, 第九版藝軒圖書第九版藝軒圖書, p.318.
[13] Spiller, E. (1972). Low‐Loss Reflection Coatings Using Absorbing Materials. Applied Physics Letters, 20(9), 365–367.
[14] E. Spiller. (1994). Soft X-ray Optics. SPIE, The International Society for Optical Engineering: Bellingham, WA.
[15] Vinogradov, A. V., & Zeldovich, B. Y. (1977). X-ray and far uv multilayer mirrors: principles and possibilities. Applied Optics, 16(1), 89.
[16] 多種元素在多種元素在EUV波段處的實部波段處的實部(δ)及虛部及虛部(β)折射率折射率
Available: https://www.cxro.lbl.gov
[17] Stuik, R., Louis, E., Yakshin, A. E., Görts, P. C., Maas, E. L. G., Bijkerk, F., … Haidl, M. (1999). Peak and integrated reflectivity, wavelength and gamma optimization of Mo/Si, and Mo/Be multilayer, multielement optics for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17(6), 2998.
[18] Frank, F. C., & van der Merwe, J. H. (1949). One-Dimensional Dislocations. I. Static Theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 198(1053), 205–216.
[19] Stranski, I. N., Krastanov, L., Sitzungsber, A. W. W. (1938). 146, 797–810.
[20] Liang, T., Ultanir, E., Zhang, G., Park, S.-J., Anderson, E., Gullikson, E., … Baker, S. (2007). Growth and printability of multilayer phase defects
107
on extreme ultraviolet mask blanks. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2098.
[21] Spiller, E., Baker, S. L., Mirkarimi, P. B., Sperry, V., Gullikson, E. M., & Stearns, D. G. (2003). High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition. Applied Optics, 42(19), 4049.
[22] Hiruma, K., Miyagaki, S., Yamanashi, H., Tanaka, Y., & Nishiyama, I. (2008). Performance and quality analysis of Mo–Si multilayers formed by ion-beam and magnetron sputtering for extreme ultraviolet lithography. Thin Solid Films, 516(8), 2050–2057.
[23] Yasaka, M. (2010). X-ray thin-film measurement techniques. The Rigaku Journal, 26(2), 1–9.
[24] Zhao, J., Yi, K., Wang, H., Fang, M., Wang, B., Hu, G., & He, H. (2015). Influence of deposition rate on interface width of Mo/Si multilayers. Thin Solid Films, 592, 256–261.
[25] Rook, K., Turner, P., Srinivasan, N., Henry, T., Yamamoto, K., Lee, M. H. (2020). Process optimization for performance improvement in Mo/Si multilayers for EUV mask blanks. Extreme Ultraviolet Lithography, 11517, 1151708-1-1151708-6.
[26] Bajt, S., Stearns, D. G., & Kearney, P. A. (2001). Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics, 90(2), 1017–1025.
[27] Messier, R., Giri, A. P., & Roy, R. A. (1984). Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2(2), 500–503.
[28] Slaughter, J. M., Schulze, D. W., Hills, C. R., Mirone, A., Stalio, R.,
108
Watts, R. N., … Falco, C. M. (1994). Structure and performance of Si/Mo multilayer mirrors for the extreme ultraviolet. Journal of Applied Physics, 76(4), 2144–2156.
[29] Köhler, A., Gerlach, J. W., Höche, T., Chassé, T., Neumann, H., Frank, W., … Rauschenbach, B. (2002). Mo-Si Interface Formation by Ion Beam Sputter Deposition. MRS Proceedings, 749.
[30] Rauschenbach, B. (2002). Ion beam assisted deposition—a processing technique for preparing thin films for high-technology applications. Vacuum, 69(1-3), 3–10.
[31] Stearns, D. G., Rosen, R. S., & Vernon, S. P. (1991). Fabrication of high‐reflectance Mo–Si multilayer mirrors by planar‐magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9(5), 2662–2669.
[32] SEN research 4.0, Available: https://reurl.cc/mLZnlV
[33] Windt, D. L. (1998). IMD—Software for modeling the optical properties of multilayer films. Computers in Physics, 12(4), 360.
[34] 原子力顯微鏡原理原子力顯微鏡原理,
Available: http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[35] Mo在在 632nm處之折射率處之折射率, Available:
https://www.filmetrics.com/refractive-index-database/Mo/Molybdenum
[36] Hiruma, K., Miyagaki, S., Yamanashi, H., Tanaka, Y., Cullins, J., & Nishiyama, I. (2006). Performance and quality analysis of Mo-Si multilayers deposited by ion beam sputtering and magnetron sputtering. Emerging Lithographic Technologies X.
[37] Andreev, S., Akhsakhalyan, A., Bibishkin, M., Chkhalo, N., Gaponov,
109
S., Gusev, S., … Zuev, S. (2003). Multilayer optics for XUV spectral region: technology fabrication and applications. Open Physics, 1(1).
[38] Schubert, E., Frost, F., Ziberi, B., Wagner, G., Neumann, H., & Rauschenbach, B. (2005). Ion beam sputter deposition of soft x-ray Mo/Si multilayer mirrors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23(3), 959.
[39] Pinegyn, V. I., Zubarev, E. N., Kondratenko, V. V., Sevryukova, V. A., Yulin, S. A., Feigl, T., & Kaiser, N. (2008). Structure and stressed state of molybdenum layers in Mo/Si multilayers. Thin Solid Films, 516(10), 2973–2980.