| 研究生: |
李沛豐 Pei-Feng Lee |
|---|---|
| 論文名稱: |
低軌道衛星系統之增強型隨機接入時槽之設計 The Design of Enhanced RACH Occasion in LEO-NTN |
| 指導教授: |
許獻聰
Shiann-Tsong Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 第五代行動通訊 、非地面網路 、衛星通訊 、低軌道衛星 、隨機接入時槽 |
| 外文關鍵詞: | 5G New Radio, Non-Terrestrial Networks, Satellite Communication, Low Earth Orbit, RACH Occasion |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近期低軌道衛星之進展,衛星通訊已被納入第五代通訊中之非地面網路,並寄望於補足地面基地台無法完整布建的缺口,實現無縫覆蓋之願景。3GPP 也著手於基於 New Radio (NR) 技術之非地面網路之研究與排定其於NR Rel-17 中之工作項目。然而,由於衛星通訊的固有特性,部分 NR 功能需要重新評估設計。其中,影響隨機接入程序最多即是低軌道衛星通訊系統之長傳輸延遲。因應長傳輸延遲,隨機接入程序中之部分參數與資源安排都應重新審視。在 NR Rel-17 中,假設非地面網路之用戶均配備GNSS功能,意即用戶知曉自己的位置訊息。基於上述前提,本論文為基於 NR 之低軌道衛星系統提出了新的隨機接入時槽 ( RO ) 設計。
在設計過程中,考量到場景中可能具有或不具有 GNSS 能力的用戶(G-UE 或 nG-UE),分別排程它們的隨機接入時槽,G-UE 使用G-RO;nG-UE 使用nG-RO。基於此獨立排程設計,本論文提出了三種可以由網路配置的 RO 模式:ROpair, Overlapped RO 與 Non-Overlapped RO。ROpair即是以相同的週期排程 G-RO 和 nG-RO;Overlapped RO 和Non-Overlapped RO則是使用不同的週期排程 G-RO 和 nG-RO,差別於允許G-RO 和 nG-RO 重疊與否。
為了驗證提出之 RO 模式的有效性,本論文透過模擬評估存取所需之延遲。模擬結果顯示分別調度 G-RO 和 nG-RO 的優點有兩個。其一,所有用戶的平均接入延遲明顯降低。再者,nG-UE之平均接入延遲較不會受未來G-UE數量增長影響。此外,本論文亦分析了在不同前導碼分配比情況下,Overlapped RO 之性能有何差異。
With the recent advances in low earth orbit (LEO) constellation, satellite communication (SATCOM) has been included in Non-Terrestrial Network (NTN) and recognized as a promising solution to extend services to unserved area in 5G networks. 3GPP has also considered to develop NR-based NTN, however, part of NR functions should be re-worked duo to SATCOM inherent characteristics. In NR-based NTN, user equipments (UEs) are anticipated to be GNSS-enabled in NTN scenarios in NR Rel-17. Based on the aforementioned features, we propose three novel RACH Occasions (RO) patterns for LEO-NTN.
Though user terminals are assumed to have location information, we design RO patterns with backward compatibility, namely, users who is not aware of its own location are also considered. For UEs with or without GNSS capability (G-UE or nG-UE), we propose to schedule their RO separately, G-RO for G-UE, nG-RO for nG-UE. In this work, we propose three RO patterns that could be flexibly configured by the network. Specifically, scheduling G-RO and nG-RO with same periodicity, we propose RO pair, contrarily with different periodicity, we propose overlapped RO and non-overlapped RO.
To validate the effectiveness of proposed RO patterns, we review the preamble transmission delays through computer simulation. Advantages of scheduling G-RO and nG-RO separately are two-fold. Firstly, simulation results show that average delay of successful preamble transmission for all UEs is reduced. Secondly, nG-UEs are relatively more insusceptible to expected increment of G-UE number in the future. Moreover, we investigate the performance of overlapped RO with different preamble division ratio.
[1] F. Rinaldi et al., "Non-Terrestrial Networks in 5G & Beyond: A Survey," in IEEE Access, vol. 8, pp. 165178-165200, 2020
[2] Inigo del Portillo, Bruce G. Cameron, Edward F. Crawley, “A technical comparison of three low earth orbit satellite constellation systems to provide global broadband,” Acta Astronautica, Volume 159, 2019, Pages 123-135
[3] Nils Pachler, Inigo del Portillo, Edward F. Crawley, Bruce G. Cameron, “An Updated Comparison of Four Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband,” Acta Astronautica, 2019
[4] Study on New Radio (NR) to Support Non-Terrestrial Networks, 3GPP TR 38.811, Release 15, Oct. 2019.
[5] Solutions for NR to Support Non-Terrestrial Networks (NTN), 3GPP TR 38.821, Release 16, Jan. 2020.
[6] Lin, Xingqin, et al. "5G from Space: An Overview of 3GPP Non-Terrestrial Networks." arXiv preprint arXiv:2103.09156 (2021).
[7] M. Series, “IMT vision - Framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU, pp. 2083-0, 2015.
[8] Study on using satellite access in 5G, 3GPP TR 22.822, V16.0.0, August 2018.
[9] “NG-RAN; Architecture Description,” 3GPP TS 38.401, v16.5.0 April 2021
[10] “NR and NG-RAN Overall description,” 3GPP TS 38.300, v16.5.0 March 2021
[11] “Medium Access Control (MAC) protocol specification,”3GPP TS 38.321, V16.4.0, Mar. 2021
[12] “Physical layer procedures for control,” 3GPP TS 38.213, V16.2.0, Jun. 2020.
[13] “NR; Requirements for support of radio resource management,” 3GPP TS 38.133, v16.7.0, April 2021
[14] “Physical channels and modulation,” 3GPP TS 38.211, v16.5.0, Mar. 2021.
[15] H. Saarnisaari, A. O. Laiyemo and C. H. M. de Lima, "Random Access Process Analysis of 5G New Radio Based Satellite Links," 2019 IEEE 2nd 5G World Forum (5GWF), 2019, pp. 654-658
[16] T. Chen, W. Wang, R. Ding, G. Seco-Granados, L. You and X. Gao, "Location-Based Timing Advance Estimation for 5G Integrated LEO Satellite Communications," GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1-6
[17] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh and P. Xiao, "Energy-Efficient Random Access for LEO Satellite-Assisted 6G Internet of Remote Things," in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114-5128, 1 April1, 2021
[18] L. Zhen, T. Sun, G. Lu, K. Yu and R. Ding, "Preamble Design and Detection for 5G Enabled Satellite Random Access," in IEEE Access, vol. 8, pp. 49873-49884, 2020
[19] J. Bai and G. Ren, "Adaptive Packet-Length Assisted Random Access Scheme in LEO Satellite Network," in IEEE Access, vol. 7, pp. 68250-68259, 2019
[20] ITU-R Document IMT-2020 Document 5D/3-E “Initial Evaluation Report from ATIS WTSC IMT-2020 Evaluation Group for 3GPP Proponent Submissions of SRIT (DOC. IMT-2020/13) & RIT (DOC. IMT-2020/14)” Nov, 2019