| 研究生: |
楊政憲 Cheng-hsien Yang |
|---|---|
| 論文名稱: |
高雷諾數低NOx預混弱漩渦噴流燃燒器:紊焰碎形特性定量量測 High-Reynolds-Number Low NOx Premixed Weak-Swirl Jet Burners: Quantitative Measurements of Fractal Characteristics for Turbulent Flames. |
| 指導教授: |
施聖洋
Shenq-yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 預混紊流燃燒 、漩渦噴流火焰 、碎形維度 、內外截止長度 、紊流燃燒速度 |
| 外文關鍵詞: | premixed turbulent combustion, swirl jet flame, fractal dimension, inner and outer cutoff length scales, turbulent burning velocity |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對貧油預混甲烷/空氣之弱漩渦噴流火焰,執行一系列高紊流雷諾數(遠大於先前相關研究)燃燒實驗,利用二維雷射斷層攝影術(laser tomography,LT)及質點影像測速技術(particle image velocimetry,PIV),定量量測紊焰之碎形特性與紊流燃燒速度。所採用之弱漩渦噴流燃燒器(weak swirl jet burner,WSJB),類似先前研究Bédat & Cheng (1995)所設計,本研究共有兩組不同噴嘴直徑之WSJB,一為25 mm另一為50 mm,它可提供穩定駐留於燃燒器噴嘴出口之火焰。弱漩渦噴流火焰動態時序影像,係以高速高解析之CMOS攝影機(5000張/秒,512 × 512 pixels)所攝取,將影像二值化後,利用stepping-caliper碎形分析方法獲取火焰面之碎形參數,包括碎形維度(D3)和內外截止長度(?i;?o)等物理量。本實驗無因次紊流強度的範圍u?/SL ≈ 2.6 ~ 20.4,其中u?為均方根紊流擾動速度而SL為層流燃燒速度,而相對應之紊流雷諾數(ReT = u?LI/ν) 之範圍則從400至7,000,其中LI為流場之積分長度尺度而ν為空氣之運動黏滯係數。當u?/SL > 3,D3值僅為2.22且與u?/SL之大小無關,此結果不同於先前大部分學者之研究結果(如I.C. engines、Bunsen flames及V-shape flames等研究結果,找到D3 ≈ 2.33)。但本結果與Gülder團隊(2000)在本生燈型態火焰(ReT < 500)所獲之結果相符。而?i和?o值僅會隨著u?/SL的增加而略微下降,其減少變化範圍:當u?/SL從2.6增加到20.4,?i和?o值會從1.5 mm和12 mm略微減少到1.0 mm和10 mm。將前述實驗所得之碎形參數代入Gouldin (1987)所提出之紊流燃燒速度(ST)碎形理論模型中計算,並與本實驗PIV量測值做一比較,我們發現模型計算之ST值無法預測實際量測值,顯示出目前碎形數學模型有需要再做進一步的修正。
This thesis measures fractal properties and turbulent burning velocities (ST/SL) of lean premixed methane/air weak swirl jet flames using laser tomography and particle image velocimetry (PIV). Two weak swirl jet burners (WSJB) of 25 mm and 50 mm diameters are applied, which are similar to the previous design by Bédat & Cheng (1995) for providing stabilized flames above. The instantaneous images of weak swirl jet flames were recorded by a high-speed, high-resolution CMOS camera (5,000 frames/s, 512 ? 512 pixels). After binarization, the flame front images were analyzed using the stepping-caliper method to obtain the fractal dimensions (D3) and inner and outer cutoff length scales (?I and ?o). In this study, the dimensionless turbulent intensities (u′/SL) of turbulence can be controlled from u′/SL = 2.6 to u′/SL = 20.4 with corresponding turbulent Reynolds number (ReT = u?LI/ν) ranging from 400 to 7000 which are much larger than previous studies, where u′, SL, LI and ? are the r.m.s. turbulent intensity, laminar burning velocity, integral length scale of turbulence, and kinematic viscosity of reactants, respectively. It is found that values of D3 are only 2.22 independent of u′/SL. This result differs drastically with most of previous studies, such as I.C. engines, Bunsen flames, and V-shape flames, that reported values of D3 ≈ 2.33 when u′/SL > 3. However, D3 ≈ 2.22 is in support of a previous study using Bunsen-type flames at smaller values of ReT (<500) by Gülder et al. (2000). As values of u′/SL increase from 2.6 to 20.4, values of ?i and ?o decrease from 1.5 mm and 12 mm to 1.0 mm and 10 mm. Finally, these fractal parameters obtained at high ReT cannot predict ST/SL correctly using available fractal area closure model, indicating a need for further improvement of existing fractal models.
[1] Abdel-Gayed, R. G., Bradley, D. and Lawes, M., “Experimental study of premixed flames in intense isotropic turbulence”, Combust. Flame 100, 486-494 (1995).
[2] Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York (1988).
[3] Hirano, A., Aspects of the Ultrastructure of Amyotrophic Lateral Sclerosis, Raven Press, New York (1982).
[4] Correa, S. M., “A review of NOx formation under gas-turbine combustion conditions”, Combust. Sci. Tech. 87, 329-362 (1992).
[5] Mandelbrot, B. B., “On the geometry of homogeneous turbulence, with stress on the fractal dimension of iso-surfaces of scalars”, J. Fluid Mech.72, 401-416 (1975).
[6] Mantzaras, J., Felton, P. G. and Bracco, F. V., “Fractal and turbulent premixed engine flames”, Combust. Flame 77, 295-310 (1989).
[7] North, G. L. and Santavicca, D. A., “The fractal nature of premixed turbulent flames”, Combust. Sci. Tech. 72, 215-232 (1990).
[8] Kobayashi, H. and Kawazoe, H., “Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames”, Proc. Combust. Inst. 28, 375-382 (2000).
[9] Foucher F. and Mounaïm-Rousselle C., “Fractal approach to the evaluation of burning rates in the vicinity of the piston in a spark-ignition engine”, Combust. Flame 143, 295-310 (1989).
[10] Gouldin, F. C., “An application of fractals to modeling premixed turbulent flames”, Combust. Flame 68, 249-266 (1987).
[11] Gülder, Ö. L., Smallwood, G. J., Wong, R., Snelling, D. R., Smith, R., Deschamps, B. M. and Sautet, J. C., “Flame front surface characteristics in turbulent premixed propane/air combustion”, Combust. Flame 120, 407-416 (2000).
[12] 黃逸芳,“氫燃燒器與低氮氧化物燃燒器實作研究”,國立中央大學機械工程研究所,碩士論文,2006年。
[13] 游智傑,“低氮氧化物燃燒器與加氫效應定量量測”, 國立中央大學機械工程研究所,碩士論文,2007年。
[14] Bédat, B. and Cheng, R. K. “Experimental study of premixed flames in intense isotropic turbulence”, Combust. Flame 100, 486-494 (1995).
[15] Damköhler, G., “The effect of turbulent on the flame velocity in gas mixtures”, Elektrochem 46, 601-652 (1940) [English transl. NACA Tech. Mem. 1112, 1947].
[16] Kerstein, A. R., “Fractal dimension of turbulent premixed flames”, Combust. Sci. Tech. 60, 441-445 (1988).
[17] Murayama, M. and Takeno, T., “Fractal-like character of flamelets in turbulent premixed combustion”, Proc. Combust. Inst. 21, 551-559 (1988).
[18] Chen, Y. C., Private Communication (1996).
[19] Chigier, N. A. and Chervinsky, A., “Experimental investigation of swirling vortex motion in jets”, J. Appl. Mech. 34, 443-451 (1967).
[20]Claypole, T. C. and Syred, N., “The effect of swirl burner aerodynamics on NOx formation”, Proc. Combust. Inst. 18, 81-89 (1980).
[21]Syred, N. and Beér, J. M., “Combustion in swirling flows: a review”, Combust. Flame 23, 143-201 (1974). Turns, S. R. 2002 An introduction to combustion. 2nd Edition, McGraw-Hill.
[22]Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. and Cheng, R. K., “A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines”, Proc. Combust. Inst. 30, 2867-2874 (2005).
[23] Gupta, A. K., Lilley, D. G., Syred, N., Swirl Flows, Abacus Press, England (1984).
[24]Chen, R. H. and Driscoll, J. F., “The role of the recirculation vortex in improving fuel-air mixing within swirling flames”, Proc. Combust. Inst. 22, 531-540 (1988).
[25]Chen, C. K., Lau., K. S., Chin, W. K. and Cheng, R. K., “Freely propagation open premixed turbulent flames stabilized by swirl”, Proc. Combust. Inst. 24, 511-518 (1992).
[26]Cheng, R. K., “Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl”, Combust. Flame 101, 1-14 (1995).
[27]Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. and Cheng, R. K., “Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner”, Proc. Combust. Inst. 28, 359-366 (2000).
[28]Yegian, D. T. and Cheng, R. K., “Development of lean premixed low-swirl burner for low NOx practical application”, Combust. Sci. Tech. 139, 207-227 (1998).
[29]Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. and Loftus, P., “Scaling and development of low-swirl burners for low emission furnaces and boilers”, Proc. Combust. Inst. 28, 1305-1313 (2000).
[30]Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. and Cheng, R. K., “A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines”, Proc. Combust. Inst. 30, 2867-2874 (2005).
[31]Cho, P., Law, C. K., Hertzbeqrg, J. H. and Cheng, R. K., “Structure and propagation of turbulent premixed flames stabilized in a stagnation flow”, Proc. Combust. Inst. 21, 1493-1499 (1986).
[32]Yetter, R. A., Glassman, I. and Gabler, H. C., “Asymmetric whirl combustion: a new low NOx approach”, Proc. Combust. Inst. 28, 1265-1272 (2000).
[33] 魏建樟,“應用雷射斷層攝影術探討預混紊焰傳播”, 國立中央大學機械工程研究所,碩士論文, 1999年。
[34] Mandelbrot, B. B., Fractals: Form, Chance and Dimension, Freeman, San Francisco (1977).
[35]Haslam, B. D. and Ronney, P. D., “Fractal Properties of Propagating Fronts in a Strongly Stirred Fluid”, Physics of Fluids 7, 1931-1937 (1995).
[36]尹偉光,“預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展”,國立中央大學機械工程研究所,碩士論文,1996年。
[37]林孟良,“氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場”,國立中央大學機械工程研究所,碩士論文,1998年。
[38]Yang, T. S., Shy, S. S. and Chyou, Y. P., “Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis”, J. Fluid Mech. 21, 157-169 (2005).
[39]林文基,“甲烷與丙烷預混紊流燃燒速度的量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[40]Shy, S. S., Lee, E. I., Chang, N. W. and Yang, S. I., “Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner”, Proc. Combust. Inst. 28, 383-390 (2000a).
[41]Shy, S. S., Lin, W. J. and Peng, K. Z., “High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc. Combust. Inst. 28, 561-568 (2000b).
[42]Shy, S. S., Lin, W. J. and Wei, J. C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. Lond. A 456, 1997-2019 (2000c).
[43]Yang, S. I., and Shy, S. S., “Measurements of fractal properties of premixed
turbulent flames and their relation to turbulent burning velocities”, The Chinese Journal of Mech. 17, 93-101 (2001).
[44] Gouldin, F. C., Bray, K. N. C., and Chen, J. C., “Chemical closure model for fractal flamelets”, Combust. Flame 77, 241 (1989).
[45] Ronney, P. D. and Yakhot, V., “Flame broadening effects on premixed
turbulent flame speed”, Combust. Sci. Tech. 86, 31-43 (1992).