跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹翔豪
Hsiang-Hao Chan
論文名稱: 串聯系統中元件壽命為指數分配之區間資料的階段加速壽命試驗
Step-Stress Accelerated Life Tests of Series Systems with Interval Data Under Exponential Lifetime Distributions
指導教授: 樊采虹
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 群集資料串聯系統累積曝露模型型I 設限階段加速壽命試驗Marshall-Olkin 二元指數分配
外文關鍵詞: Interval data, Series system, Cumulative exposure model, Type-I censor, Stepstress accelerated degradation test, Marshall-Olkin bi-exponential distribution
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在串聯系統中, 任一元件失效, 將導致系統無法運作, 有時無法確知造成系統失效的元件, 即為隱蔽資料。本文討論觀測值為區間資料之串聯系統, 其中各元件壽命服從指數分配且其平均壽命與應力間具對數線性關係, 並服從累積曝露模型。考慮型I 設限的階段加速壽命試驗, 分別在元件壽命分配彼此獨立及具Marshall-Olkin 二元指數分配下, 利用期望值-最大概似演算法及遺失資訊法則求得參數之最大概似估計與其費雪訊息矩陣, 進而得到系統可靠度之相關推論。


    High reliability products have longer lifetime under normal environment. Accelerated life tests are
    usually used to reduce the experiment time. In a series system, the system fails when any of the
    components fails, while the cause of system failure may not be observed which is known as masked
    data. In this thesis, we consider the step-stress accelerated life tests for series systems with Type-I
    censoring, in which the lifetimes of components are exponentially distributed. We not only consider
    those distributions are independent, but also consider the Marshall-Olkin bivariate distribution for
    two-components series systems. Assume that there exists log-linear relationship between the mean
    lifetime of components and the levels of the environmental stress variables under the cumulative exposure model, and the data analyzed are interval data in the sense only the numbers of failures are observed at the times of changing stress levels. Maximum likelihood inference is developed
    incorporated with the EM algorithm as well as the missing information principle to achieving the Fisher information. Simulation study is carried out in the reliability analysis. It shows that the proposed method is more accurate and efficient than the bootstrap method.

    摘要i Abstract ii 誌謝iii 目錄iv 表目次vi 第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章獨立元件串聯系統之型I 設限階段應力加速壽命試驗6 2.1 模型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 EM 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 費雪訊息矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 參數變換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 第三章具Marshall-Olkin 指數分配串聯系統之群集資料的階段應力加速壽命試驗20 3.1 二元Marshall-Olkin 指數分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 型I 設限階段加速壽命試驗之群集隱蔽資料. . . . . . . . . . . . . . . . . . . . . . 22 3.3 EM 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 費雪訊息矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6 參數變換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 第四章數值分析與模擬研究30 4.1 二元件獨立之串聯系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 二元Marshall-Olkin 指數分配之兩元件串聯系統. . . . . . . . . . . . . . . . . . . . 44 第五章結論與展望63 參考文獻64 附錄附錄一: 獨立元件壽命下參數變換之費雪訊息矩陣67 附錄附錄二: 具相關性模型參數之費雪訊息矩陣69 附錄附錄三: 具相關性模型中參數變換之費雪訊息矩陣71

    [1] Bai, D. S., Kim, M. S., and Lee, S. H. (1989). Optimum simple step-stress accelerated life
    tests with censoring. IEEE Trans. Reliab., 38, 528–532.
    [2] Balakrishnan, N. and Mitra, D. (2012). Left truncated and right censored weibull data and
    likelihood inference with an illustration. Computational Statistics and Data Analysis, 56,
    4011–4025.
    [3] Fan, T. H. and Hsu, T.M. (2011). Statistical inference of a series system with masked data with
    correlated log-normal lifetime distributions under type I censoring. International Conference
    on Advances in Probability and Statistics-Theory and Applications, December 30, 2011.
    [4] Fan, T. H. and Hsu, T. M. (2012). Accelerated life tests of a series system with masked interval
    data under exponential lifetime distributions. IEEE Trans. Reliab., 61, 798–808.
    [5] Guan, Q. and Tang, Y. (2012). Optimal step-stress test under type I censoring for multivariate
    exponential distribution. J. Statist. Plann. Inference, 142, 1908–1923.
    [6] Ju, S. K. (2013). Reliability analysis of two-component series system under Marshall-Olkin bi-
    variate weibull lifetime distribution. Master Thesis, Graduate Institute of Statistics, National
    Central University, Jungli, Taiwan.
    [7] Kundo, D. and Dey, A. K. (2009). Estimating the parameters of the Marshall-Olkin bivariate
    weibull distribution by EM algorithm. Computational Statistics and Data Analysis, 53, 956–
    965.
    [8] Li, G. A. (2005). A characterization of the multivariate Marshall-Olkin exponential distribu-
    tion and its parameter estimation. Chinese Journal of Engineering Mathematics, 22, 1055–
    1062.
    [9] Lin, H. H. (2012). Competing risks model of Marshall-Olkin bivariate exponential distribution
    under hybrid censoring. Master Thesis, Graduate Institute of Statistics, National Central
    University, Jungli, Taiwan.
    [10] Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.
    Methodological , 44, 226–233.
    [11] Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the
    American Statistical Association, 62, 30–44.
    [12] Miller, R. and Nelson, W. (1983). Optimum simple step-stress plans for accelerated life testing.
    IEEE Trans. Reliab., 32, 59–65.
    [13] Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE Trans.
    Reliab., 33, 293–296.
    [14] Mukhopadhyay, C. and Basu, A. P. Bayesian analysis of competing risks: k independent
    exponentials. Technical report No.516, Department of Statistics, The Ohio State University.
    [15] Mukhopadhyay, C. and Basu, A. P. (1997). Bayesian analysis of incomplete time and cause of
    failure data. J. Statist. Plann. Inference, 59, 79–100.
    [16] Nelson, W. (1980). Accelerated life testing - step-stress models and data analysis. IEEE Trans.
    Reliab., 29, 103–108.
    [17] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analyses,
    John Wiley Sons, New York.
    [18] Sarhan, A. M. (2001). Reliability estimation of components from masked system life data.
    Reliability Engineering and System Safety, 74, 107–113.
    [19] Usher, J. S. (1996). Weibull component reliability prediction in the presence of masked data.
    IEEE Trans. Reliab., 45, 229–232.
    [20] Usher, J. S. and Hodgson, T. J. (1988). Maximum likelihood analysis of component reliability
    using masked system life-test data. IEEE Trans. Reliab., 37, 550–555.

    QR CODE
    :::