| 研究生: |
林君瀌 Jun-Biao Lin |
|---|---|
| 論文名稱: |
多資產美式選擇權之評價及其應用 The Algorithms for Valuing American Style Multivariate Contingent Claims: Applications for ESO and other Derivatives |
| 指導教授: |
張傳章
Chuang-Chang Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 美式選擇權 、多資產 |
| 外文關鍵詞: | transformed-trinomial approaches, ESO, an extended Markov Chain approach, Weather Derivatives |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上,當標的資產為一特殊分配時,將增加衍生性商品的訂價困難度。Camara 和 Chung (2006) 所提出的轉換的二元樹模型 (Transformed Binomial Tree) 解決了部份難題。然而其模型對處理多資產標的商品仍有不足。因此,本研究提出三種方法,嘗試在轉換為常態架構 (Transformed Normal Method) 下,對多資產標的商品訂價。結果發現,在單一商品下,馬可夫鏈(Markov Chain Model)可得到相對於轉換的三元樹模型 (Transformed Trinomial Tree) 較佳的結果。而當延申到多資產時,Sobol序列馬可夫鏈 (Sobol Sequence Markov Chain Model) 無論在長天期或短天期的衍生性金融商品,皆可獲得最佳的結果。此外,本研究亦將此方法應用至目前熱門的二種商品:員工認股權證(Executive Stock Option) 和氣候選擇權 (Weather Derivatives)。以增加本研究之廣度。
This dissertation develops three numerical algorithms for pricing European and American multivariate contingent claims. One approach is a multivariate transformed trinomial model. This model is an extension of the Camara and Chung (2006) transformed-binomial model with one underlying asset and a discrete-time version of Schoder (2004) model for pricing European-style options. However, unlike Schoder’s model, our model can easily handle American-style multivariate contingent claims. Another one is the Markov Chain approach provided by Duan and Simonato’s (2001). The other approach is an extended Markov Chain approach which takes Sobol sequences into Duan and Simonato’s (2001) Markov Chain model to accelerate convergence speed. We use numerical examples to show how to use these three methods to value various types of multivariate contingent claims, such as digital options and Executive Stock Option (ESO) and Weather Derivatives.
[1] Alaton, P., Djehiche, B. and Stillberger, D. (2002), “On Modelling and Pricing Weather Derivatives”, Applied Mathematical Finance 9, pp.1-20.
[2] Aggarwal, R. K. and Samwick, A. A. (1999a), “Executive Compensation, Strategic Competition, and Relative Performance Evaluation: Theory and Evidence”, Journal of Finance, Vol. 54, pp.1999-2043.
[3] Aggarwal, R. K. and Samwick, A. A. (1999b), “The Other Side of the Tradeoff: The Impact of Risk on Executive Compensation”, Journal of Political Economy, Vol. 107, pp.65-105.
[4] Barro, J. R. and Barro R. J. (1990), “Pay, Performance and Turnover of Bank CEOs’ “, Journal of Labor Economics, Vol. 8, pp.448-81.
[5] Boyle, P.P., Evnine, J., and Gibbs, S. (1989), “Numerical Evaluation of Multivariate Contingent Claims”, The Review of Financial Studies 2, pp.241-250.
[6] Boyle P., Broadie, M. and Glasserman P. (1997), “Monte Carlo Methods for Security Pricing”, Journal of Economic Dynamics and Control, pp.1267-1321.
[7] Brennan, M. J. (1979), “The Pricing of Contingent Claims in Discrete Time Models”, Journal of Finance 34, pp.53-68.
[8] Camara, A. (2001), “ The Pricing of Relative Performance Based Incentives for Executive Compensation”, Journal of Business Finance and Accounting 28, pp. 1149-1191
[9] Camara, A. (2003), “A Generalization of the Brennan-Rubinstein Approach for the Pricing of Derivatives”, Journal of Finance 58, pp.805-819.
[10] Camara, A. (2005), “Option Prices Sustained by Risk-Preferences”, Journal of Business 78, pp.1683-1708.
[11] Camara, A. and Chung , S.L. (2006), “Options Pricing for the Transformed-binomial Class”, Journal of Futures Markets 26, pp.759-787.
[12] Cao, M., and Wei, J., “Weather Derivatives Valuation and Market Price of Weather Risk”, Journal of Futures Markets. Vol 24, No. 11, pp.1065-1084
[13] Challis, S. (1999), “Bright Forecast for Profits,” Reactions, June.
[14] Cox, J., Ross, S. and Rubinstein, M. (1979), “Option Pricing: A Simplified Approach”, Journal of Financial Economics 7, pp.229-263.
[15] Detemple, J., and Sundaresan, S. (1999), “Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach”, The Review of Financial Studies Vo.12, pp.835-872.
[16] Dichel, B. (1998a), “Black-Scholes won’t do”, Risk October Edition, pp.8-9.
[17] Dichel, B. (1998b), “At last: a Model for Weather Risk”, Risk Energy and Power Risk Management, March Edition, pp.20-21.
[18] Duan, J. C. and Simonato, J.G.. (2001), “American Option Pricing Under GARCH by a Markov Chain Approximation.” Journal of Economics Dynamics and Control 25, pp.1689-1718.
[19] Duan, J. C. and Gauthier, G. and Simonato, J.G.. (2001), “ Numerical Pricing of Contingent Claims on Multiple Assets AND/OR factors - A Low-Discrepancy Markov Chain Approach”, Working paper.
[20] Duan, J.C. and Lin, J.B. (2007), “ Markov Chain in Term Structure”, Working paper.
[21] Ekvall, N. (1996), “A lattice Approach for Pricing of Multivariate Contingent Claims”, European Journal of Operational Research 91, pp. 214-228.
[22] Gibbons, R. and Murphy, K.J. (1990), “Relative Performance Evaluation for Chief Executive Officers”, Industrial and Labor Relations Review, Vol. 43, pp.30S-51S.
[23] Galanti S., Jung, A. (1997), “Low-Discrepancy Sequences: Monte Carlo Simulation of Option Prices”, Journal of Derivatives, pp.63-83.
[24] Garen, J. (1994), “Executive Compensation and Principal-Agent Theory”, Journal of Political Economy, Vol.102, pp.1175-99.
[25] Hall, B. J., and Murphy, K.J. (2002), “Stock Options for Undiversified Executives”, Journal of Accounting and Economics 33, pp. 3-42.
[26] Hanley, M. (1999), “Hedging the Force of Nature”, Risk Professional, 5, July/August, pp.21-25.
[27] Huddart, Steve and Lang, M. (1996), “Employee Stock Options Exercises: an Empirical Analysis”, Journal of Accounting and Economics 21, pp.5-43
[28] Janakiraman, S.N., Lambert R.A.and Larcker D.F. (1992), “An Empirical Investigation of the Relative Performance Evaluation Hypothesis”, Journal of Accounting Research, Vol. 30, pp.53-69.
[29] Jiang, J.X.F. and Brige, J.R.(2004), “Comparisons of Alternative Quasi-Monte Carlo Sequences for American Option Pricing”, Working Paper
[30] Johnson, N.L. (1949), “Systems of Frequency Curves Generated by Methods of Translation”, Biometrika, Vol. 36, No. 1/2, pp.149-176.
[31] Johnson, S.A.and Tian, Y.S. (2000a), “Indexed Executive Stock Options”, Journal of Financial Economics, Vol. 57, pp.35-64.
[32] Joy, C., Boyle, P.P. and Tan K.S. (1996), “Quasi-Monte Carlo Methods in Numerical Finance”, Methodologies and Applications for Pricing and Risk Management, Vol 24, pp.269-280.
[33] Jung, A. (1998), “Improving the Perfromance of Low-Discrepancy Sequences”, Journal of Derivatives, pp.85-95.
[34] Kamrad, B. and Ritchken, P. (1991), “Multinomial Approximating Models for Options with k State Variables”, Management Science, Vol. 37, NO. 12, pp.1640-1652.
[35] Kole, S. (1997), “The Complexity of Compensation Contracts”, Journal of Financial Economics 43, pp.79-104.
[36] Leggio K.B. and Lien, D. (2002), “Hedging Gas Bills with Weather Derivatives”, Journal of Economics and Finance 26, pp.88-100.
[37] Lucas, R.E. (1978). “Asset Prices in an Exchange Economy”, Econometrica, 46, pp.1429-1445.
[38] Marsh, T. A. and Merton, R. (1987), “Dividend Behavior for the Aggregate Sotck Market”, Journal of Business, 60, pp.1-40.
[39] Moro, B. (1995), “The Full Monte”, Risk 8, pp.57-58
[40] Murphy, K. (1985), “Corporate Performance and Managerial Remuneration”, Journal of Accounting and Economics, Vol. 7, pp.11-42.
[41] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992), Numerical Recipes in C, Second Edition, Cambridge University Press. Cambridge, UK.
[42] Rubinstein, M. (1991), “Pay Now, Choose Later”, Risk 4, pp.13
[43] Rubinstein, M. (1994), “Implied Bionmial Trees”, Journal of Finance 49, pp. 771-818.
[44] Schroder, M. (2004), “Risk-neutral Parameter Shifts and Derivatives Pricing in Discrete Time”, Journal of Finance, Vol. 59, Iss. 5, pp.2375-2401.
[45] Silva, M.E. (2002), “Quasi Monte Carlo in Finance: Extending for High Dimensional problems”, Resenha da BM&F.
[46] Wicksell,S.D. (1917), Ark. Mat. Astr. Fys. 12, no. 20.