| 研究生: |
鍾智萱 Chih-Hsuan Chung |
|---|---|
| 論文名稱: |
具乙基、苯環及羧酸官能基之中孔洞材料的合成與鑑定 Synthesis and Characterization ofMesoporous Silicas with Ethane, Benzene and Carboxylic Functionality |
| 指導教授: |
李光華
Kwang-Hwa Lii 高憲明 Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 中孔洞 、羧酸 、乙基 、苯環 |
| 外文關鍵詞: | mesoporous, ethane, benzene, carboxylic |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是合成具有雙官能基的中孔洞材料,共分為兩個部分, 第一部分是利用 P123 (Pluronic 123) 作為模板試劑,
1,2-bis-(trimethoxylsilyl)ethane (BTME) 與 Carboxyethylsilanetriol sodium salt (CES) 為共同矽源,在酸性條件下合成具有乙基與羧酸官能基之中孔洞材料 SBA-15,之後再利用 48 % H2SO4 在高溫下裂解模板 P123,得到雙官能基化的中孔洞材料 SBA-15,而 CES 含量可達60 %,仍具有良好的結構規則度。
第二部份也是利用 P123 (Pluronic 123) 作為模板試劑,
1,4-bis(triethoxysilyl)benzene (BTEB) 與 Carboxyethylsilanetriol sodium salt (CES) 為共同矽源,在酸性條件下合成具有苯環與羧酸官能基之中孔洞材料 SBA-15,之後再利用 48 % H2SO4 在高溫下裂解模板 P123,得到雙官能基化的中孔洞材料 SBA-15,而 CES 含量可達 50 %,仍具有良好的結構規則度。
以上兩部份實驗都會利用 X-ray 粉末繞射、固態核磁共振光
譜、熱重分析儀及等溫氮氣吸脫附等儀器鑑定材料的特性,了解在不同 CES 含量比例之孔洞性質變化趨勢,且對於植入的羧酸官能基定量。
The thesis is divided to two parts, both studied on
bifunctionalization of mesoporous materials. In part one, carboxylic acid functionalized mesoporous ethane-silicas have been synthesized with P123 as the structure-directing agent under acidic conditions via co-condensation of 1,2-bis-(trimethoxylsilyl)ethane (BTME) and carboxyethylsilanetriol sodium salt (CES). A high degree of structural ordering is still retained up to 60 mol% CES loading (based on silicon) in the synthesis mixture, and we also have acid capacity by acid-base titration, which was 4.53 mmol/g.
In part two, well-ordered hexagonal mesoporous silica SBA-15 functionalized with carboxylic acid functional groups have been synthesized via co-condensation of 1,4-bis(triethoxysilyl)benzene (BTEB) and Carboxyethylsilanetriol sodium salt (CES) templated by P123 under acidic condition. A high degree of structural ordering is still retained up to 50 mol% CES loading (based on silicon) in the synthesis mixture.
In the thesis, the materials thus obtained were characterized by a variety of techniques including X-ray diffraction (XRD), solid state 13C and 29Si NMR spectroscopy, thermogravimetric analysis (TGA) and nitrogen
sorption measurements.
1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 1992, 359, 710.
3. J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olson, and E. W. Sheppard, Chem. Mater. 1994, 6, 2317.
4. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57.
5. D. Y. Zhao, Q. Huo, J. L. Feng, F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
6. S. H. Joo, R. Ryoo, M. Kruk, and M. Jaroniec, J. Phys. Chem. B 2002, 106, 4640.
7. R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, J. Phys. Chem. B 2000, 104, 11465.
8. F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun. 2003, 2136.
9. C. Boissiére, A. Larbot, V. D. Lee, J. Kooyman, and E. Prouzet, Chem. Mater. 2000, 12, 2902.
10. K. Yano, Y. Fukushima, Bulletin of the Chemical Society of Japan 2003, 76, 2103.
11. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. Ed. 2006, 45, 3216
12. B. Wennerstom, H. Micelle: Amphiphile Aggregation in Aqueous solution, Heidelberg, S.-V. 1980.
13. U. Henrikksson, E. S. Blackmore, G. J. T. Soderman, O., J. Phys. Chem. 1992, 96, 3894.
14. Q. Huo, D. I. Margolese, U. Clesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, and G. D. Stucky, Nature, 1994, 368, 317.
15. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. SchEth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
16. A. Monnier, F. SchEth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. Stucky,M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. Chmelka, Science 1993, 261, 1299.
17. D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
18. C. Booth, and D. Attwood, Macromol., Rapid Commun. 2000, 21, 501.
19. K. Mortensen, and J. S. Pedersen, Macromolecules 1993, 26, 805.
20. A. Stein, B. J. Melde, and R. C. Schroden, Adv. Mater. 2000, 12, 1403.
21. C. M. Yang, Y. Wang, B. Zibrowius, and F. Schu, Phys. Chem. Chem. Phys. 2004, 6, 2461.
22. (a) N.R.E.N. Impens, P. V. D. Voort, E. F. Vansant, Microporous and Mesoporous Materials 1999, 28, 217.
(b) L. Zhang, C. C. Yu, W. Zhao, Z. H. H. Chen, L. Li, J. L. Shi, Journal of Non-Crystalline Solids 2007, 353, 4055.
23. C. Lesaint, B. Lebeau, C. Marichal, J. Patarin, Microporous and Mesoporous Materials, 2005, 83, 76.
24. C. Y. Wu, Y. T. Hsu, C. M. Yang, Microporous and Mesoporous Materials, 2009, 117, 249.
25. M. H. Lim and A. Stein, Chem. Mater. 1999, 11, 3285.
26. M. H. Lim, C. F. Blanford, and A. Stein, Chem. Mater. 1998, 10, 467.
27. L. Mercier, and T. J. Pinnavaia, Chem. Mater. 2000, 12, 188.
28. S. R. Hall, C. E. Fowler, B. Lebeau, and S. Mann, Chem. Commun., 1999, 201.
29. H. M. Kao, C. H. Liao, T. T Hung, Y. C. Pan, and A. S. T. Chiang, Chem. Mater. 2008, 20, 2412.
30. H. M. Kao, T. Y. Shen, J. D. Wu, L. P. Lee, Microporous and Mesoporous Materials, 2008, 110, 461.
31. H. M. Kao, L. P. Lee, and A. Palani, Anal. Chem. 2008, 80, 3016.
32. M. C. Burleigh, M. A. Markowitz, M. S. Spector, and B. P. Gaber, J. Phys. Chem. B, 2001, 105, 9935.
33. H. M. Kao, C. H. Liao, A. Palani, Y. C. Liao, Microporous and Mesoporous Materials, 2008, 113, 212.
34. S. S. E. Park, D. S. Han, S. C. Han, M. J. Jinb, and T. Ohsunac, Chem. Commun., 2006, 4131.
35. H. M. Kao, J. D. Wu, C. C. Cheng, A. S. T. Chiang, Microporous and Mesoporous Materials, 2006, 88, 319.
36. H. M. Kao, P. C. Chang, J. D. Wu, A. S. T. Chiang, C. H. Lee, Microporous and Mesoporous Materials, 2006, 97, 9.
37. J. Morell, M. Güngerich, G. Wolter, J. Jiao, M. Hunger, and M. Fröba, J. Mater. Chem., 2006, 16, 2809.
38. E. B. Cho, D. Kim, Microporous and Mesoporous Materials, 2008, 113, 530.
39. S. Fujita, and S. Inagaki, Chem. Mater. 2008, 20, 891.
40. Z. Yan, S. Tao, J. Yin, and G. Li, J. Mater. Chem., 2006, 16, 2347.
41. Q. Tanga, Y. Xua, D. Wua, and Y. Sun, Journal of Solid State Chemistry, 2006, 179, 1513.
42. C. Lei, Y. Shin, J. Liu, and E. J. Ackerman, J. Am. Chem. Soc., 2002, 124, 11242.
43. K. Y. Ho, G. McKay, and K. L. Yeung, Langmuir, 2003, 19, 3019.
44. N. Liu, R. A. Assink, and C. J. Brinker, Chem. Commun., 2003, 370.
45. C. M. Yang, Y. Wang, B. Zibrowius, and F. Schüth, Phys. Chem. Chem. Phys., 2004, 6, 2461.
46. C. M. Yang, B. Zibrowius, and F. Schüth, Chem. Commun., 2003, 1772.
47. M. A. Wahab, Kim, C. S. Ha, Microporous and Mesoporous Materials, 2004, 69, 19.
48. J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, Langmuir 2007, 23, 4315.
49. M. C. Bruzzoniti, A. Prelle, C. Sarzanini, B. Onida, S. Fiorilli, and E.
50. Garrone, J. Sep. Sci. 2007, 30, 2414.
51. L. Han, Y. Sakamoto, O. Terasaki, Y. Lia, and S. Che, J. Mater. Chem., 2007, 17, 1216.
52. C. T. Tsai, Y. C. Pan, C. C. Ting, S. Vetrivel, Anthony S. T. Chiang, George T. K. Fey, and H. M. Kao, Chem. Commun., 2009, 5018.
53. Q. Yang, J. Liu, J. Yang, L. Zhang, Z. Feng, J. Zhang, C. Li, Microporous and Mesoporous Materials, 2005, 77, 257.
54. Y. Goto, and S. Inagaki, Chem. Commun., 2002, 2410.
55. C. M. Yang, B. Zibrowius, W. Schmidt, and F. Schüth, Chem. Mater. 2004, 16, 2918.
56. 國家同步輻射中心, http://www.srrc.gov.tw/chinese/index.aspx。