跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳爾君
Erh-Chung Chen
論文名稱: 強健模糊觀測狀態回饋控制-Circle與Popov定理
Robust Fuzzy Observer-based control-Circle and Popov Theorem
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 強健控制Popov定理Circle定理平行分散補償控制器雙線性矩陣不等式T-S模糊系統架構觀測狀態回饋控制器動態輸出回饋控制器線性矩陣不等式
外文關鍵詞: Robust control, Lure-type Lyapunov function, Parallel distributed compensator(PDC), Popov theorem, Circle theorem, Bilinear matrix inequality(BMI), Linear matrix inequality(LMI), T-S Fuzzy Model, Observer-based controller, Dynamic output feedback controller
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分成三大部份來討論:第一部份為廣義控制器的定義及系統數學架構的推導;第二部份引用Circle和Popov兩大定理推導出系統穩定的充份條件;第三部份則是利用推導出的定理來做電腦模擬,設計適合的控制器。在控制器方面,主要定位在觀測狀態回饋控制器的設計,動態輸出回饋控制器的推導方式也有介紹。
    在第一部份中,定義出一個廣義控制器,利用廣義控制器推導而得到的廣義穩定條件,可以退化為觀測狀態回饋控制閉路系統穩定條件以及動態輸出回饋控制閉路系統穩定條件。這樣的廣義控制器方便我們設計觀測狀態回饋控制器以及動態輸出回饋控制器,在本論文中則是提出觀測狀態回饋控制器的設計方法與電腦模擬。
    第二部份裡,引用非線性系統控制領域中的Circle和Popov定理,配合第一部份中的系統架構,以及使用Lyapunov定理,推導出連續和離散系統的穩定條件。因為觀測狀態回饋控制器本身架構的關係,所推導出的穩定條件會形成非線性矩陣不等式型式,產生不能直接用LMIs求解的問題。但本論文引用兩階段求解的方法來解決這問題,間接使用LMIs來求解,完成觀測狀態回饋控制器的設計。
    第三部份裡,用了三個例子來做電腦模擬,分別是非線性系統的控制、倒單擺的平衡、倒車入庫控制,探討本文理論分析對於非線性系統的控制情形。


    No

    第一章 緒論 1 {1.1}文獻回顧 1 {1.2}研究動機 2 {1.3}論文架構 3 {1.4}符號標記 4 第二章 控制系統數學模型 5 {2.1}系統的數學模型 5 {2.2}控制器的數學模型 6 {2.2.1}廣義控制器 7 {2.2.2}用廣義控制器表達觀測狀態回饋控制器 8 {2.2.3}用廣義控制器表達動態輸出回饋控制器 8 {2.3}閉迴路系統 9 {2.3.1}廣義閉迴路系統 9 {2.3.2}觀測狀態回饋閉迴路系統 10 {2.3.3}動態輸出回饋閉迴路系統 11 第三章 預備定理與非線性函數之限制 13 {3.1}預備定理 13 {3.1.1}預備定理1(蕭氏轉換) 13 {3.1.2}預備定理2(全等轉換) 14 {3.2}非線性函數的限制與特定型式 14 第四章 連續系統Circle定理之應用 16 {4.1}系統定理推導 16 {4.2}穩定檢測條件 18 {4.3}電腦模擬 24 {4.3.1}系統架構 24 {4.3.2}求解 27 第五章 連續系統Popov定理之應用 35 {5.1}系統定理推導 35 {5.2}穩定檢測條件 36 {5.3}電腦模擬 41 {5.3.1}系統架構 42 {5.3.2}求解 43 第六章 離散系統Circle定理之應用 50 {6.1}系統定理推導 50 {6.2}穩定檢測條件 51 {6.3}電腦模擬 55 {6.3.1}系統架構 55 {6.3.2}求解 56 第七章 離散系統Popov定理之應用 66 {7.1}系統定理推導 66 {7.2}穩定檢測條件 69 {7.3}電腦模擬 74 {7.3.1}系統架構 74 {7.3.2}求解 75 第八章 結論與未來方向 84 {8.1}總結 84 {8.2}未來研究方向 85 參考文獻 86

    [1]L.A.Zedeh, "The concept of a linguistic variable and its application to a approximate reasoning-I,II,III",Information Sciences, vol. 8,9, pp. 199-357,43-80, 1975.
    [2]T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control",IEEE Trans. Syst. Man and Cybern., vol. 15, no. 1, pp. 116-132, Jan. 1985.
    [3]M. Sugeno and G.T. Kang, "Structure identification of fuzzy model",Fuzzy Sets and Systems, vol. 28, pp. 15-33, 1988.
    [4]K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control systems",Fuzzy Set and Systems, vol. 45, pp. 135-156, 1992.
    [5]K. Tanaka and M. Sano, "Trajectory stabilization of a model car via fuzzy control",Fuzzy Set and Systems, vol. 70, pp. 155-170, 1995
    [6]H.O. Wang, K. Tanaka, and M.F. Griffin, "An approach to fuzzy control of nonlinear systems:stability and design issues",IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14-23, Feb. 1996.
    [7]K. Tanaka,T. IKeda, and H.O. Wang, "Fuzzy regulators and fuzzy
    observers:relaxed stability conditions and LMI-based designs",IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May 1998.
    [8]S.G. Cao, N.W. Rees, and G. Feng, "Analysis and design of fuzzy control systems using dynamic fuzzy global model",Fuzzy Sets and Systems, vol. 75, pp. 47-62, 1995.
    [9]S.G. Cao, N.W. Rees, and G. Feng, "Stability analysis of fuzzy control systems",IEEE Trans. Syst. Man and Cybern.-Part B:Cybernetics, vol. 26, no. 1, pp. 201-204, Feb. 1996.
    [10]G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak, "Design of fuzzy control systems with guaranteed stability",Fuzzy Sets and Systems, vol. 85, pp. 1-10, 1997.
    [11]S.H. Zak, "Stabilizing fuzzy system models using linear controllers",IEEE Trans. Fuzzy Systems, vol. 7, no. 2, pp. 234-240, Apr. 1999.
    [12]H. Wang, K. Tanaka, and M. Griffin, "Parallel distributed compensation of nonlinear systems by Takagi and Sugeno''s fuzzy model",in Proc. FUZZ-IEEE, Yokohama, Japan, 1995, pp. 531-538.
    [13]I.R. Petersen, "A stabilization algorithm for a class of uncertain linear systems" ,Syst. and Contr. Lett., vol. 8, pp. 351-357, 1987.
    [14]D.S. Bernstein, "Robust static and dynamic output-feedback stabilization: deterministic and stochastic perspectives" ,IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1076-1084, Dec. 1987.
    [15]D.S. Bernstein, "The optimal projection equations for static and dynamic output feedback: the singular case" ,IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1139-1143, Dec. 1987.
    [16]K. Zhou and P.P. Khargonekar, "Robust stabilization of linear systems with norm-bounded time-varying uncertainty",Syst. and Contr. Lett., vol. 10, pp. 17-20, 1988.
    [17]P.P. Khargonekar, I.R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: quadratic stabilizability and H_{infty} control theory" ,IEEE Trans. Automat. Contr., vol. 35, no. 3, pp.356-361,Mar. 1990.
    [18]L. Xie, M. Fu, and C.E. de Souza, "H_{infty} control and quadratic stabilization of systems with parameter uncertainty via output feedback" ,IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253-1256, Aug. 1992.
    [19]J.C. Geromel, J. Bernussou, and M.C. de Oliveira, "H_2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control" ,IEEE Trans. Automat. Contr., vol. 44, no. 7, pp.1449-1454, July 1999.
    [20]W.M. Haddad and D.S. Bernstein, "Explict construction of quadratic Lyapunov functions for small gain, positive,circle and Popov theorems and their application to robust stability. Part I: continuous-time theory" ,Int''l J. of Robust and Nonlinear Control, vol. 3, pp. 313-339, 1993.
    [21]W.M. Haddad and D.S. Bernstein, "Explict construction of quadratic Lyapunov functions for small gain, positive,circle and Popov theorems and their application to robust stability. Part I: dicrete-time theory" ,Int''l J. of Robust and NonlinearControl, vol. 4, pp. 249-265, 1994.
    [22]C. Pittet, S. Tarbouriech, C. Burgat, "Stability regions for linear systems with saturating controls via circle and Popov criteria",IEEE Conf. on Decision and Contr.,San Diego, California USA. Dec. 1997.
    [23]C. Pittet, S. Tarbouriech, C. Burgat, "Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs" ,IEEE Conf. on Decision and Contr.,Tampa, Florida USA. Dec. 1998.
    [24]H.K. Khalil, "Nonlinear system" , Macmillan Ed., 1992.
    [25]H.J. Kang, C. Kwon, H. Lee, and M. Park, "Robust stability analysis and design method for the fuzzy feedback linearization regulator" ,IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 464-472, Nov. 1998.
    [26]K. Kiriakidis, A. Grivas, and A. Tzes, "Quadratic stability analysis of the Takagi-Sugeno fuzzy model",Fuzzy Sets and Systems, vol. 98, pp. 1-14, 1998.
    [27]M.C.M. Teixeira and S.H. Zak, "Stabilizing controller design for uncertain nonlinear systems using fuzzy models",IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 133-142, Apr. 1999.
    [28]H.J. Lee, J.B. Park, and G. Chen, "Robust fuzzy control of nonlinear systems with parametric uncertainties",IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 369-379, Apr. 2001.
    [29]A. Jadbabaie, M. Jamshid, and A. Titli, "Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities",
    in Proc. of IEEE World Congress on Computational Intell, Anchorage, AK., May 1998, vol. 1, pp. 268-273.
    [30]S.K. Hong and R. Langari, "Synthesis of an LMI-based fuzzy control system with guaranteed optimal H_{infty} performance" ,in Proc. of IEEE World Congress on Computational Intell, Anchorage, AK., May 1998,vol. 1, pp. 422-427.
    [31]S. Boyd et al., "Linear matrix inequalities in system and control theory ", SIAM. Philadelphia, PA, 1994.
    [32]W. T. Baumann and W.J. Rugh, "Feedback control of nonlinear systems by extended linearization" ,IEEE Trans. Automat. Contr., vol. AC-31, no. 1, pp. 40-46, 1986.
    [33]J.C. Lo and M.L. Lin, "Observer-based robust H_{infty} control for fuzzy system using two-step procedure",IEEE Trans. Fuzzy Systems, vol. 12, June 2004.
    [34]G. Feng and J. Ma, "Quadratic stabilization of uncertain discrete-time fuzzy dynamic system",IEEE Trans. Circuits and Systems-I:Fundamental theory and Application, vol. 48, no. 11, pp. 1337-1344, 2001.
    [35]H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, "Parameterized linear matrix inequality techniques in fuzzy control system design",IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 324-332, Apr. 2001.
    [36]J.C. Lo and W.T. Chen, "Generalized H_2 control for LFT fuzzy systems",in
    Proc.2003 Conf. Auto. Contr., Jung-Li, TW, Mar. 2003, vol. 1.

    QR CODE
    :::